Fatigue of materials and structures application to design and damage /
Saved in:
Corporate Author: | |
---|---|
Other Authors: | , |
Format: | Electronic eBook |
Language: | English |
Published: |
London : Hoboken, N.J. :
ISTE ; Wiley,
2011.
|
Subjects: | |
Online Access: | An electronic book accessible through the World Wide Web; click to view |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Table of Contents:
- Machine generated contents note: ch. 1 Multiaxial Fatigue / Marc Blétry and Georges Cailletaud
- 1.1.Introduction
- 1.1.1.Variables in a plane
- 1.1.2.Invariants
- 1.1.3.Classification of the cracking modes
- 1.2.Experimental aspects
- 1.2.1.Multiaxial fatigue experiments
- 1.2.2.Main results
- 1.2.3.Notations
- 1.3.Criteria specific to the unlimited endurance domain
- 1.3.1.Background
- 1.3.2.Global criteria
- 1.3.3.Critical plane criteria
- 1.3.4.Relationship between energetic and mesoscopic criteria
- 1.4.Low cycle fatigue criteria
- 1.4.1.Brown-Miller
- 1.4.2.SWT criteria
- 1.4.3.Jacquelin criterion
- 1.4.4.Additive criteria under sliding and stress amplitude
- 1.4.5.Onera model
- 1.5.Calculating methods of the lifetime under multiaxial conditions
- 1.5.1.Lifetime at N cycles for a periodic loading
- 1.5.2.Damage cumulation
- 1.5.3.Calculation methods
- 1.6.Conclusion
- 1.7.Bibliography
- ch. 2 Cumulative Damage / Jean-Louis Chaboche
- 2.1.Introduction
- 2.2.Nonlinear fatigue cumulative damage
- 2.2.1.Main observations
- 2.2.2.Various types of nonlinear cumulative damage models
- 2.2.3.Possible definitions of the damage variable
- 2.3.A nonlinear cumulative fatigue damage model
- 2.3.1.General form
- 2.3.2.Special forms of functions F and G
- 2.3.3.Application under complex loadings
- 2.4.Damage law of incremental type
- 2.4.1.Damage accumulation in strain or energy
- 2.4.2.Lemaitre's formulation
- 2.4.3.Other incremental models
- 2.5.Cumulative damage under fatigue-creep conditions
- 2.5.1.Rabotnov-Kachanov creep damage law
- 2.5.2.Fatigue damage
- 2.5.3.Creep-fatigue interaction
- 2.5.4.Practical application
- 2.5.5.Fatigue-oxidation-creep interaction
- 2.6.Conclusion
- 2.7.Bibliography
- ch. 3 Damage Tolerance Design / Raphael Cazes
- 3.1.Background
- 3.2.Evolution of the design concept of "fatigue" phenomenon
- 3.2.1.First approach to fatigue resistance
- 3.2.2.The "damage tolerance" concept
- 3.2.3.Consideration of "damage tolerance"
- 3.3.Impact of damage tolerance on design
- 3.3.1."Structural" impact
- 3.3.2."Material" impact
- 3.4.Calculation of a "stress intensity factor"
- 3.4.1.Use of the "handbook" (simple cases)
- 3.4.2.Use of the finite element method: simple and complex cases
- 3.4.3.A simple method to get new configurations
- 3.4.4."Superposition" method
- 3.4.5.Superposition method: applicable examples
- 3.4.6.Numerical application exercise
- 3.5.Performing some "damage tolerance" calculations
- 3.5.1.Complementarity of fatigue and damage tolerance
- 3.5.2.Safety coefficients to understand curve a = f(N)
- 3.5.3.Acquisition of the material parameters
- 3.5.4.Negative parameter: corrosion
- "corrosion fatigue"
- 3.6.Application to the residual strength of thin sheets
- 3.6.1.Planar panels: Feddersen diagram
- 3.6.2.Case of stiffened panels
- 3.7.Propagation of cracks subjected to random loading in the aeronautic industry
- 3.7.1.Modeling of the interactions of loading cycles
- 3.7.2.Comparison of predictions with experimental results
- 3.7.3.Rainflow treatment of random loadings
- 3.8.Conclusion
- 3.8.1.Organization of the evolution of "damage tolerance"
- 3.8.2.Structural maintenance program
- 3.8.3.Inspection of structures being used
- 3.9.Damage tolerance within the gigacyclic domain
- 3.9.1.Observations on crack propagation
- 3.9.2.Propagation of a fish-eye with regards to damage tolerance
- 3.9.3.Example of a turbine disk subjected to vibration
- 3.10.Bibliography
- ch. 4 Defect Influence on the Fatigue Behavior of Metallic Materials / Gilles Baudry
- 4.1.Introduction
- 4.2.Some facts
- 4.2.1.Failure observation
- 4.2.2.Endurance limit level
- 4.2.3.Influence of the rolling reduction ratio and the effect of rolling direction
- 4.2.4.Low cycle fatigue: SN curves
- 4.2.5.Wohler curve: existence of an endurance limit
- 4.2.6.Summary
- 4.3.Approaches
- 4.3.1.First models
- 4.3.2.Kitagawa diagram
- 4.3.3.Murakami model
- 4.4.A few examples
- 4.4.1.Medium-loaded components: example of as-forged parts: connecting rods
- effect of the forging skin
- 4.4.2.High-loaded components: relative importance of cleanliness and surface state
- example of the valve spring
- 4.4.3.High-loaded components: Bearings-Endurance cleanliness relationship
- 4.5.Prospects
- 4.5.1.Estimation of lifetimes and their dispersions
- 4.5.2.Fiber orientation
- 4.5.3.Prestressing
- 4.5.4.Corrosion
- 4.5.5.Complex loadings: spectra/over-loadings/multiaxial loadings
- 4.5.6.Gigacycle fatigue
- 4.6.Conclusion
- 4.7.Bibliography
- ch. 5 Fretting Fatigue: Modeling and Applications / Trevor Lindley
- 5.1.Introduction
- 5.2.Experimental methods
- 5.2.1.Fatigue specimens and contact pads
- 5.2.2.Fatigue S-N data with and without fretting
- 5.2.3.Frictional force measurement
- 5.2.4.Metallography and fractography
- 5.2.5.Mechanisms in fretting fatigue
- 5.3.Fretting fatigue analysis
- 5.3.1.The S-N approach
- 5.3.2.Fretting modeling
- 5.3.3.Two-body contact
- 5.3.4.Fatigue crack initiation
- 5.3.5.Analysis of cracks: the fracture mechanics approach
- 5.3.6.Propagation
- 5.4.Applications under fretting conditions
- 5.4.1.Metallic material: partial slip regime
- 5.4.2.Epoxy polymers: development of cracks under a total slip regime
- 5.5.Palliatives to combat fretting fatigue
- 5.6.Conclusions
- 5.7.Bibliography
- ch. 6 Contact Fatigue / Ky Dang Van
- 6.1.Introduction
- 6.2.Classification of the main types of contact damage
- 6.2.1.Background
- 6.2.2.Damage induced by rolling contacts with or without sliding effect
- 6.2.3.Fretting
- 6.3.A few results on contact mechanics
- 6.3.1.Hertz solution
- 6.3.2.Case of contact with friction under total sliding conditions
- 6.3.3.Case of contact with partial sliding
- 6.3.4.Elastic contact between two solids of different elastic modules
- 6.3.5.3D elastic contact
- 6.4.Elastic limit
- 6.5.Elastoplastic contact
- 6.5.1.Stationary methods
- 6.5.2.Direct cyclic method
- 6.6.Application to modeling of a few contact fatigue issues
- 6.6.1.General methodology
- 6.6.2.Initiation of fatigue cracks in rails
- 6.6.3.Propagation of initiated cracks
- 6.6.4.Application to fretting fatigue
- 6.7.Conclusion
- 6.8.Bibliography
- ch. 7 Thermal Fatigue / Luc Remy
- 7.1.Introduction
- 7.2.Characterization tests
- 7.2.1.Cyclic mechanical behavior
- 7.2.2.Damage
- 7.3.Constitutive and damage models at variable temperatures
- 7.3.1.Constitutive laws
- 7.3.2.Damage process modeling based on fatigue conditions
- 7.3.3.Modeling the damage process in complex cases: towards considering interactions with creep and oxidation phenomena
- 7.4.Applications
- 7.4.1.Exhaust manifolds in automotive industry
- 7.4.2.Cylinder heads made from aluminum alloys in the automotive industry
- 7.4.3.Brake disks in the rail and automotive industries
- 7.4.4.Nuclear industry pipes
- 7.4.5.Simple structures simulating turbine blades
- 7.5.Conclusion
- 7.6.Bibliography.