Fatigue of materials and structures application to design and damage /

Saved in:
Bibliographic Details
Corporate Author: ebrary, Inc
Other Authors: Bathias, Claude, Pineau, A. (André)
Format: Electronic eBook
Language:English
Published: London : Hoboken, N.J. : ISTE ; Wiley, 2011.
Subjects:
Online Access:An electronic book accessible through the World Wide Web; click to view
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000 a 4500
001 0000165750
005 20171002063303.0
006 m o u
007 cr cn|||||||||
008 101019s2011 enka sb 001 0 eng d
010 |z  2010040728 
020 |z 1848212917 
020 |z 9781848212916 
020 |z 9781118616512 (e-book) 
035 |a (CaPaEBR)ebr10671489 
035 |a (OCoLC)842854737 
040 |a CaPaEBR  |c CaPaEBR 
050 1 4 |a TA418.38  |b .F3748 2011eb 
082 0 4 |a 620.1126  |2 22 
245 0 0 |a Fatigue of materials and structures  |h [electronic resource] ;  |b application to design and damage /  |c edited by Claude Bathias, André Pineau. 
260 |a London :  |b ISTE ;  |a Hoboken, N.J. :  |b Wiley,  |c 2011. 
300 |a xiii, 344 p. :  |b ill. 
504 |a Includes bibliographical references and index. 
505 0 |a Machine generated contents note: ch. 1 Multiaxial Fatigue / Marc Blétry and Georges Cailletaud -- 1.1.Introduction -- 1.1.1.Variables in a plane -- 1.1.2.Invariants -- 1.1.3.Classification of the cracking modes -- 1.2.Experimental aspects -- 1.2.1.Multiaxial fatigue experiments -- 1.2.2.Main results -- 1.2.3.Notations -- 1.3.Criteria specific to the unlimited endurance domain -- 1.3.1.Background -- 1.3.2.Global criteria -- 1.3.3.Critical plane criteria -- 1.3.4.Relationship between energetic and mesoscopic criteria -- 1.4.Low cycle fatigue criteria -- 1.4.1.Brown-Miller -- 1.4.2.SWT criteria -- 1.4.3.Jacquelin criterion -- 1.4.4.Additive criteria under sliding and stress amplitude -- 1.4.5.Onera model -- 1.5.Calculating methods of the lifetime under multiaxial conditions -- 1.5.1.Lifetime at N cycles for a periodic loading -- 1.5.2.Damage cumulation -- 1.5.3.Calculation methods -- 1.6.Conclusion -- 1.7.Bibliography -- ch. 2 Cumulative Damage / Jean-Louis Chaboche -- 2.1.Introduction -- 2.2.Nonlinear fatigue cumulative damage -- 2.2.1.Main observations -- 2.2.2.Various types of nonlinear cumulative damage models -- 2.2.3.Possible definitions of the damage variable -- 2.3.A nonlinear cumulative fatigue damage model -- 2.3.1.General form -- 2.3.2.Special forms of functions F and G -- 2.3.3.Application under complex loadings -- 2.4.Damage law of incremental type -- 2.4.1.Damage accumulation in strain or energy -- 2.4.2.Lemaitre's formulation -- 2.4.3.Other incremental models -- 2.5.Cumulative damage under fatigue-creep conditions -- 2.5.1.Rabotnov-Kachanov creep damage law -- 2.5.2.Fatigue damage -- 2.5.3.Creep-fatigue interaction -- 2.5.4.Practical application -- 2.5.5.Fatigue-oxidation-creep interaction -- 2.6.Conclusion -- 2.7.Bibliography -- ch. 3 Damage Tolerance Design / Raphael Cazes -- 3.1.Background -- 3.2.Evolution of the design concept of "fatigue" phenomenon -- 3.2.1.First approach to fatigue resistance -- 3.2.2.The "damage tolerance" concept -- 3.2.3.Consideration of "damage tolerance" -- 3.3.Impact of damage tolerance on design -- 3.3.1."Structural" impact -- 3.3.2."Material" impact -- 3.4.Calculation of a "stress intensity factor" -- 3.4.1.Use of the "handbook" (simple cases) -- 3.4.2.Use of the finite element method: simple and complex cases -- 3.4.3.A simple method to get new configurations -- 3.4.4."Superposition" method -- 3.4.5.Superposition method: applicable examples -- 3.4.6.Numerical application exercise -- 3.5.Performing some "damage tolerance" calculations -- 3.5.1.Complementarity of fatigue and damage tolerance -- 3.5.2.Safety coefficients to understand curve a = f(N) -- 3.5.3.Acquisition of the material parameters -- 3.5.4.Negative parameter: corrosion -- "corrosion fatigue" -- 3.6.Application to the residual strength of thin sheets -- 3.6.1.Planar panels: Feddersen diagram -- 3.6.2.Case of stiffened panels -- 3.7.Propagation of cracks subjected to random loading in the aeronautic industry -- 3.7.1.Modeling of the interactions of loading cycles -- 3.7.2.Comparison of predictions with experimental results -- 3.7.3.Rainflow treatment of random loadings -- 3.8.Conclusion -- 3.8.1.Organization of the evolution of "damage tolerance" -- 3.8.2.Structural maintenance program -- 3.8.3.Inspection of structures being used -- 3.9.Damage tolerance within the gigacyclic domain -- 3.9.1.Observations on crack propagation -- 3.9.2.Propagation of a fish-eye with regards to damage tolerance -- 3.9.3.Example of a turbine disk subjected to vibration -- 3.10.Bibliography -- ch. 4 Defect Influence on the Fatigue Behavior of Metallic Materials / Gilles Baudry -- 4.1.Introduction -- 4.2.Some facts -- 4.2.1.Failure observation -- 4.2.2.Endurance limit level -- 4.2.3.Influence of the rolling reduction ratio and the effect of rolling direction -- 4.2.4.Low cycle fatigue: SN curves -- 4.2.5.Wohler curve: existence of an endurance limit -- 4.2.6.Summary -- 4.3.Approaches -- 4.3.1.First models -- 4.3.2.Kitagawa diagram -- 4.3.3.Murakami model -- 4.4.A few examples -- 4.4.1.Medium-loaded components: example of as-forged parts: connecting rods -- effect of the forging skin -- 4.4.2.High-loaded components: relative importance of cleanliness and surface state -- example of the valve spring -- 4.4.3.High-loaded components: Bearings-Endurance cleanliness relationship -- 4.5.Prospects -- 4.5.1.Estimation of lifetimes and their dispersions -- 4.5.2.Fiber orientation -- 4.5.3.Prestressing -- 4.5.4.Corrosion -- 4.5.5.Complex loadings: spectra/over-loadings/multiaxial loadings -- 4.5.6.Gigacycle fatigue -- 4.6.Conclusion -- 4.7.Bibliography -- ch. 5 Fretting Fatigue: Modeling and Applications / Trevor Lindley -- 5.1.Introduction -- 5.2.Experimental methods -- 5.2.1.Fatigue specimens and contact pads -- 5.2.2.Fatigue S-N data with and without fretting -- 5.2.3.Frictional force measurement -- 5.2.4.Metallography and fractography -- 5.2.5.Mechanisms in fretting fatigue -- 5.3.Fretting fatigue analysis -- 5.3.1.The S-N approach -- 5.3.2.Fretting modeling -- 5.3.3.Two-body contact -- 5.3.4.Fatigue crack initiation -- 5.3.5.Analysis of cracks: the fracture mechanics approach -- 5.3.6.Propagation -- 5.4.Applications under fretting conditions -- 5.4.1.Metallic material: partial slip regime -- 5.4.2.Epoxy polymers: development of cracks under a total slip regime -- 5.5.Palliatives to combat fretting fatigue -- 5.6.Conclusions -- 5.7.Bibliography -- ch. 6 Contact Fatigue / Ky Dang Van -- 6.1.Introduction -- 6.2.Classification of the main types of contact damage -- 6.2.1.Background -- 6.2.2.Damage induced by rolling contacts with or without sliding effect -- 6.2.3.Fretting -- 6.3.A few results on contact mechanics -- 6.3.1.Hertz solution -- 6.3.2.Case of contact with friction under total sliding conditions -- 6.3.3.Case of contact with partial sliding -- 6.3.4.Elastic contact between two solids of different elastic modules -- 6.3.5.3D elastic contact -- 6.4.Elastic limit -- 6.5.Elastoplastic contact -- 6.5.1.Stationary methods -- 6.5.2.Direct cyclic method -- 6.6.Application to modeling of a few contact fatigue issues -- 6.6.1.General methodology -- 6.6.2.Initiation of fatigue cracks in rails -- 6.6.3.Propagation of initiated cracks -- 6.6.4.Application to fretting fatigue -- 6.7.Conclusion -- 6.8.Bibliography -- ch. 7 Thermal Fatigue / Luc Remy -- 7.1.Introduction -- 7.2.Characterization tests -- 7.2.1.Cyclic mechanical behavior -- 7.2.2.Damage -- 7.3.Constitutive and damage models at variable temperatures -- 7.3.1.Constitutive laws -- 7.3.2.Damage process modeling based on fatigue conditions -- 7.3.3.Modeling the damage process in complex cases: towards considering interactions with creep and oxidation phenomena -- 7.4.Applications -- 7.4.1.Exhaust manifolds in automotive industry -- 7.4.2.Cylinder heads made from aluminum alloys in the automotive industry -- 7.4.3.Brake disks in the rail and automotive industries -- 7.4.4.Nuclear industry pipes -- 7.4.5.Simple structures simulating turbine blades -- 7.5.Conclusion -- 7.6.Bibliography. 
533 |a Electronic reproduction.  |b Palo Alto, Calif. :  |c ebrary,  |d 2015.  |n Available via World Wide Web.  |n Access may be limited to ebrary affiliated libraries. 
650 0 |a Materials  |x Fatigue. 
650 0 |a Materials  |x Mechanical properties. 
650 0 |a Microstructure. 
655 7 |a Electronic books.  |2 local 
700 1 |a Bathias, Claude. 
700 1 |a Pineau, A.  |q (André) 
710 2 |a ebrary, Inc. 
856 4 0 |u http://site.ebrary.com/lib/daystar/Doc?id=10671489  |z An electronic book accessible through the World Wide Web; click to view 
908 |a 170314 
942 0 0 |c EB 
999 |c 154896  |d 154896