Machine Learning for Data Streams : with Practical Examples in MOA /
A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework.
Сохранить в:
Главные авторы: | , , , |
---|---|
Формат: | Электронный ресурс eКнига |
Язык: | английский |
Опубликовано: |
London, England :
The MIT Press,
[2017]
|
Серии: | Book collections on Project MUSE.
|
Предметы: | |
Online-ссылка: | Full text available: |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Оглавление:
- Intro; Contents; List of Figures; List of Tables; Preface; I INTRODUCTION; 1 Introduction; 2 Big Data Stream Mining; 3 Hands-on Introduction to MOA; II STREAM MINING; 4 Streams and Sketches; 5 Dealing with Change; 6 Classification; 7 Ensemble Methods; 8 Regression; 9 Clustering; 10 Frequent Pattern Mining; III THE MOA SOFTWARE; 11 Introduction to MOA and Its Ecosystem; 12 The Graphical User Interface; 13 Using the Command Line; 14 Using the API; 15 Developing New Methods in MOA; Bibliography; Index