Machine Learning for Data Streams : with Practical Examples in MOA /

A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework.

保存先:
書誌詳細
主要な著者: Bifet, Albert (著者), Pfahringer, Bernhard (著者), Holmes, Geoffrey (著者), Gavaldà, Ricard, 1964- (著者)
フォーマット: 電子媒体 eBook
言語:英語
出版事項: London, England : The MIT Press, [2017]
シリーズ:Book collections on Project MUSE.
主題:
オンライン・アクセス:Full text available:
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
目次:
  • Intro; Contents; List of Figures; List of Tables; Preface; I INTRODUCTION; 1 Introduction; 2 Big Data Stream Mining; 3 Hands-on Introduction to MOA; II STREAM MINING; 4 Streams and Sketches; 5 Dealing with Change; 6 Classification; 7 Ensemble Methods; 8 Regression; 9 Clustering; 10 Frequent Pattern Mining; III THE MOA SOFTWARE; 11 Introduction to MOA and Its Ecosystem; 12 The Graphical User Interface; 13 Using the Command Line; 14 Using the API; 15 Developing New Methods in MOA; Bibliography; Index