The essentials of finite element modeling and adaptive refinement for beginning analysts to advanced researchers in solid mechanics /

Tallennettuna:
Bibliografiset tiedot
Päätekijä: Dow, John O., 1941-
Aineistotyyppi: Elektroninen E-kirja
Kieli:englanti
Julkaistu: [New York, N.Y.] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2012.
Aiheet:
Linkit:An electronic book accessible through the World Wide Web; click to view
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
Sisällysluettelo:
  • Preface
  • 1. Introduction
  • 1.1 Problem definition
  • 1.2 Overall objectives
  • 1.3 Specific tasks
  • 1.4 The central role of the interpolation functions
  • 1.5 A closer look at the interpolation functions
  • 1.6 Physically interpretable interpolation functions in action
  • 1.7 The overall significance of the physically interpretable notation
  • 1.8 Examples of model refinement and the need for adaptive refinement
  • 1.9 Examples of adaptive refinement and error analysis
  • 1.10 Summary
  • 1.11 References
  • 2. An overview of finite element modeling characteristics
  • 2.1 Introduction
  • 2.2 Characteristics of exact finite element results
  • 2.3 More demanding loading conditions
  • 2.4 Discretization errors in an initial model
  • 2.5 Error reduction and uniform refinement
  • 2.6 Error reduction and adaptive refinement
  • 2.7 The effect of element modeling capability on discretization errors
  • 2.8 Summary and future applications
  • 2.9 References
  • 2A. Elements of two-dimensional modeling
  • 2A1. Introduction
  • 2A2. Submodeling refinement strategy
  • 2A3. Initial model
  • 2A4. Adaptive refinement results
  • 2A5. Summary
  • 2A6. References
  • 2B. Exact solutions for two longitudinal bar problems
  • 2B1. Introduction
  • 2B2. General solution of the governing differential equation
  • 2B3. Application of a free boundary condition
  • 2B4. Second application of separation of variables
  • 2B5. Solution for a constant distributed load
  • 2B6. Solution for a linearly varying distributed load
  • 2B7. Summary
  • 3. Identification of finite element strain modeling capabilities
  • 3.1 Introduction
  • 3.2 Identification of the strain modeling capabilities of a three-node bar element
  • 3.3 An introduction to physically interpretable interpolation polynomials
  • 3.4 Identification of the physically interpretable coefficients
  • 3.5 The decomposition of element displacements into strain components
  • 3.6 A common basis for the finite element and finite difference methods
  • 3.7 Modeling capabilities of the four-node bar element
  • 3.8 Identification and evaluation of element behavior
  • 3.9 Evaluation of a two-dimensional strain model
  • 3.10 Analysis by inspection in two dimensions
  • 3.11 Summary and conclusion
  • 3.12 Reference
  • 4. The source and quantification of discretization errors
  • 4.1 Introduction
  • 4.2 Background concepts, the residual approach to error analysis
  • 4.3 Quantifying the failure to satisfy point-wise equilibrium
  • 4.4 Every finite element solution is an exact solution to some problem
  • 4.5 Summary and conclusion
  • 4.6 Reference
  • 5. Modeling inefficiency in irregular isoparametric elements
  • 5.1 Introduction
  • 5.2 An overview of isoparametric element strain modeling characteristics
  • 5.3 Essential elements of the isoparametric method
  • 5.4 The source of strain modeling errors in isoparametric elements
  • 5.5 Strain modeling characteristics of isoparametric elements
  • 5.6 Modeling errors in irregular isoparametric elements
  • 5.7 Results for a series of uniform refinements
  • 5.8 Summary and conclusion
  • 5.9 References
  • 6. Introduction to adaptive refinement
  • 6.1 Introduction
  • 6.2 Physically interpretable error estimators
  • 6.3 A model refinement strategy
  • 6.4 A demonstration of uniform refinement
  • 6.5 A demonstration of adaptive refinement
  • 6.6 An application of an absolute error estimator
  • 6.7 Summary
  • 6.8 References
  • 7. Strain energy-based error estimators, the Z/Z error estimator
  • 7.1 Introduction
  • 7.2 The basis of the Z/Z error estimator, a smoothed strain representation
  • 7.3 The Z/Z elemental strain energy error estimator
  • 7.4 The Z/Z error estimator
  • 7.5 A modified locally normalized Z/Z error estimator
  • 7.6 A demonstration of the Z/Z error estimator
  • 7.7 A demonstration of adaptive refinement
  • 7.8 Summary and conclusion
  • 7.9 References
  • 7A. Gauss points, super convergent strains, and Chebyshev polynomials
  • 7A1. Introduction
  • 7A2. Modeling behavior of three-node elements
  • 7A3. Gauss points and Chebyshev polynomials
  • 7A4. References
  • 7B. An unsuccessful example of adaptive refinement
  • 7B1. Introduction
  • 7B2. Example 1
  • 7B3. Example 2
  • 7B4. Summary
  • 8. A high resolution point-wise residual error estimator
  • 8.1 Introduction
  • 8.2 An overview of the point-wise residual error estimator
  • 8.3 The theoretical basis for the point-wise residual error estimator
  • 8.4 Computation of the point-wise residual error estimator
  • 8.5 Formulation of the finite difference operators
  • 8.6 The formulation of the point-wise residual error estimator
  • 8.7 A demonstration of the point-wise finite difference error estimator
  • 8.8 A demonstration of adaptive refinement
  • 8.9 A temptation to avoid and a reason for using child meshes
  • 8.10 Summary and conclusion
  • 8.11 Reference
  • 9. Modeling characteristics and efficiencies of higher order elements
  • 9.1 Introduction
  • 9.2 Adaptive refinement examples (4.0% termination criterion)
  • 9.3 Adaptive refinement examples (0.4% termination criterion)
  • 9.4 In-situ identification of the five-node element modeling behavior
  • 9.5 Strain contributions of the basis set components
  • 9.6 Comparative modeling behavior of four-node elements
  • 9.7 Summary, conclusion, and recommendations for future work
  • 10. Formulation of a 10-node quadratic strain element
  • 10.1 Introduction
  • 10.2 Identification of the linearly independent strain gradient quantities
  • 10.3 Identification of the elemental strain modeling characteristics
  • 10.4 Formulation of the strain energy expression
  • 10.5 Identification and evaluation of the required integrals
  • 10.6 Expansion of the strain energy kernel
  • 10.7 Formulation of the stiffness matrix
  • 10.8 Summary and conclusion
  • 10A. A numerical example for a 10-node stiffness matrix
  • 10A1. Introduction
  • 10A2. Element geometry and nodal numbering
  • 10A3. Formulation of the transformation to nodal displacement coordinates
  • 10A4. Formulation and evaluation of the strain energy expression
  • 10A5. Formulation of the stiffness matrix
  • 10A6. Summary and conclusion
  • 10B. Matlab formulation of the 10-node element stiffness matrix
  • 10B1. Introduction
  • 10B2. Driver program for forming the stiffness matrix for a 10-node element
  • 10B3. Form phi and phi inverse for 10-node element
  • 10B4. Form integrals in stiffness matrix using Green's theorem
  • 10B5. Form strain energy kernel for 10-node element
  • 10B6. Plot geometry and nodes for 10-node element
  • 10B7. Function to transform Matlab matrices to form for use in Word
  • 11. Performance-based refinement guides
  • 11.1 Introduction
  • 11.2 Theoretical overview for finite difference smoothing
  • 11.3 Development of the refinement guide
  • 11.4 Problem description
  • 11.5 Examples of adaptive refinement
  • 11.6 An efficient refinement guide based on nodal averaging
  • 11.7 Further comparisons of the refinement guides
  • 11.8 Summary and conclusion
  • 11.9 References
  • 12. Summary and research recommendations
  • 12.1 Introduction
  • 12.2 An overview of advances in adaptive refinement
  • 12.3 Displacement interpolation functions revisited: a reinterpretation
  • 12.4 Advances in the finite element method
  • 12.5 Advances in the finite difference method
  • 12.6 Recommendations for future work and research opportunities
  • 12.7 Reference
  • Index.