Entropy in dynamical systems

"This comprehensive text on entropy covers three major types of dynamics: measure preserving transformations; continuous maps on compact spaces; and operators on function spaces. Part I contains proofs of the Shannon-McMillan-Breiman Theorem, the Ornstein-Weiss Return Time Theorem, the Krieger...

Whakaahuatanga katoa

I tiakina i:
Ngā taipitopito rārangi puna kōrero
Kaituhi matua: Downarowicz, Tomasz, 1956-
Kaituhi rangatōpū: ebrary, Inc
Hōputu: Tāhiko īPukapuka
Reo:Ingarihi
I whakaputaina: Cambridge ; New York : Cambridge University Press, 2011.
Rangatū:New mathematical monographs ; 18.
Ngā marau:
Urunga tuihono:An electronic book accessible through the World Wide Web; click to view
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
Rārangi ihirangi:
  • Machine generated contents note: Introduction; Part I. Entropy in Ergodic Theory: 1. Shannon information and entropy; 2. Dynamical entropy of a process; 3. Entropy theorems in processes; 4. Kolmogorov-Sinai entropy; 5. The ergodic law of series; Part II. Entropy in Topological Dynamics: 6. Topological entropy; 7. Dynamics in dimension zero; 8. The entropy structure; 9. Symbolic extensions; 10. A touch of smooth dynamics; Part III. Entropy Theory for Operators: 11. Measure theoretic entropy of stochastic operators; 12. Topological entropy of a Markov operator; 13. Open problems in operator entropy; Appendix A. Toolbox; Appendix B. Conditional S-M-B; List of symbols; References; Index.