Thermodynamics and the destruction of natural resources

"This book is a unique, multidisciplinary, effort to apply rigorous thermodynamics fundamentals, a disciplined scholarly approach, to problems of sustainability, energy, and resource uses. Applying thermodynamic thinking to problems of sustainable behavior is a significant advantage in bringing...

Full description

Saved in:
Bibliographic Details
Corporate Author: ebrary, Inc
Other Authors: Bakshi, Bhavik R., Gutowski, Timothy George Peter, Sekuli�c, Du�san P.
Format: Electronic eBook
Language:English
Published: Cambridge ; New York : Cambridge University Press, 2011.
Subjects:
Online Access:An electronic book accessible through the World Wide Web; click to view
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Machine generated contents note: Introduction Bhavik R. Bakshi,Timothy Gutowski, Dusan Sekulic; Part I. Foundations: 1. Thermodynamics: generalized available energy and availability or exergy Elias Gyftopoulos; 2. Energy and exergy: does one need both concepts for a study of resources use Dusan Sekulic; 3. Accounting for resource use via thermodynamics Bhavik R. Bakshi, Anil Baral, Jorge L. Hau; Part II. Products & processes: 4. Material separation and recycling Timothy Gutowski; 5. Entropy based metric for transformational technologies development Dusan Sekulic; 6. Thermodynamic analysis of resources used in manufacturing processes Timothy Gutowski, Dusan Sekulic; 7. Case studies in energy use to realize ultra-high purities in semiconductor manufacturing Eric Williams, Nikhil Krishnan, Sarah Boyd; 8. Energy resources and use: the present (2008) situation, possible sustainable paths to the future and the thermodynamic perspective Noam Lior; Part III. Life cycle assessments & metrics: 9. Using thermodynamics and statistics to improve the quality of life cycle inventory data Bhavik R. Bakshi, Hangjoon Kim, Prem K. Goel; 10. Developing sustainable technology: metrics from thermodynamics Geert Van der Vorst, Jo Dewulf, Herman Van Langenhove; 11. Entropy production and resource consumption in life cycle assessments Stefan G�ossling-Reisemann; 12. Exergy and material flow in industrial and ecological systems Nandan Ukidwe, Bhavik R. Bakshi; 13. Materials flow analysis and input-output analysis: a synthesis Shinichiro Nakamura; Part IV. Economic, Social Industrial, Eco Systems. 14. Early development of input-output analysis of energy and ecologic systems Bruce Hannon; 15. Exergoeconomics and exergoenvironmental analysis George Tsatsaronis; 16. Entopy, economics and policy Matthias Ruth; 17. Integration and segregation in a population - a thermodynamicist's view Mueller Ingo; 18. Exergy use in ecosystems analysis: background and challenges Roberto Pastres, Brian D. Fath; 19. Thoughts on the application of thermodynamics to the development of sustainability science Timothy Gutowski, Dusan Sekulic, Bhavik R. Bakshi.