Quantization on Nilpotent Lie Groups
This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the a...
保存先:
主要な著者: | , |
---|---|
団体著者: | |
フォーマット: | 電子媒体 eBook |
言語: | 英語 |
出版事項: |
Cham :
Springer International Publishing : Imprint: Birkhäuser,
2016.
|
版: | 1st ed. 2016. |
シリーズ: | Progress in Mathematics,
314 |
主題: | |
オンライン・アクセス: | http://dx.doi.org/10.1007/978-3-319-29558-9 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
目次:
- Preface
- Introduction
- Notation and conventions
- 1 Preliminaries on Lie groups
- 2 Quantization on compact Lie groups
- 3 Homogeneous Lie groups
- 4 Rockland operators and Sobolev spaces
- 5 Quantization on graded Lie groups
- 6 Pseudo-differential operators on the Heisenberg group
- A Miscellaneous
- B Group C* and von Neumann algebras
- Schrödinger representations and Weyl quantization
- Explicit symbolic calculus on the Heisenberg group
- List of quantizations
- Bibliography
- Index.