Causality statistical perspectives and applications /

"This book looks at a broad collection of contributions from experts in their fields"--

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
সংস্থা লেখক: ebrary, Inc
অন্যান্য লেখক: Berzuini, Carlo, Dawid, Philip, Bernardinelli, Luisa
বিন্যাস: বৈদ্যুতিক বৈদ্যুতিন গ্রন্থ
ভাষা:ইংরেজি
প্রকাশিত: Chichester, West Sussex, U.K. : Wiley, 2012.
মালা:Wiley series in probability and statistics.
বিষয়গুলি:
অনলাইন ব্যবহার করুন:An electronic book accessible through the World Wide Web; click to view
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
সূচিপত্রের সারণি:
  • Statistical causality : some historical remarks
  • The language of potential outcomes
  • Structural equations, graphs and interventions
  • The decision-theoretic approach to causal
  • Causal inference as a prediction problem : assumptions, identification, and evidence synthesis
  • Graph-based criteria of identifiability of causal questions
  • Causal inference from observational data : a Bayesian predictive approach
  • Causal inference from observing sequences of actions
  • Causal effects and natural laws : towards a conceptualization of causal counterfactuals
  • For non-manipulable exposures, with application to the effects of race and sex
  • Cross-classifications by joint potential outcomes
  • Estimation of direct and indirect effects
  • The mediation formula : a guide to the assessment of causal pathways in nonlinear models
  • The sufficient cause framework in statistics, philosophy and the biomedical and social sciences
  • Inference about biological mechanism on the basis of epidemiological data
  • Ion channels and multiple sclerosis
  • Supplementary variables for causal estimation
  • Time-varying confounding : some practical considerations in a likelihood framework
  • Natural experiments as a means of testing causal inferences
  • Nonreactive and purely reactive doses in observational studies
  • Evaluation of potential mediators in randomized trials of complex interventions (psychotherapies)
  • Causal inference in clinical trials
  • Granger causality and causal inference in time series analysis
  • Dynamic molecular networks and mechanisms iIn the biosciences : a statistical framework.