Search Results - WPIX~

Refine Results
  1. 5301

    Roadway safety : identifying needs and implementing countermeasures / by Chandler, Brian E.

    Published 2016
    Table of Contents: “…-- 6.2.2 Advance warning -- 6.2.3 In-curve warning -- 6.2.4 Speed reduction -- 6.3 Single vehicle run off road -- 6.3.1 Pavement marking -- 6.3.2 Rumble strips -- 6.3.3 Shoulders -- 6.3.4 Safety edgesm -- 6.3.5 Clear zone -- 6.4 Opposite-direction crashes -- 6.4.1 Centerline pavement marking -- 6.4.2 No passing zones -- 6.4.3 Raised pavement markers -- 6.4.4 Centerline rumble strips -- 6.4.5 Median barriers -- 6.5 Wrong-way direction crashes -- 6.5.1 Signing and pavement marking -- 6.5.2 Active warning -- 6.6 Weather and lighting conditions -- 6.6.1 Wet pavement crashes -- 6.6.2 Dark conditions -- 6.7 Clear zone -- 6.7.1 Flatten slopes -- 6.7.2 Fixed object strategies --…”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  2. 5302

    Design and fabrication of self-powered micro-harvesters : rotating and vibrated micro-power systems / by Pan, C. T., Hwang, Y. M., Lin, Liwei, Chen, Yingzhong

    Published 2014
    Table of Contents: “…Machine generated contents note: About the Authors xi Preface xiii Acknowledgments xv 1 Introduction 1 1.1 Background 1 1.2 Energy Harvesters 2 1.2.1 Piezoelectric ZnO Energy Harvester 3 1.2.2 Vibrational Electromagnetic Generators 3 1.2.3 Rotary Electromagnetic Generators 4 1.2.4 NFES Piezoelectric PVDF Energy Harvester 4 1.3 Overview 5 2 Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films 7 2.1 Introduction 7 2.2 Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters 10 2.2.1 Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester 10 2.2.2 Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film 12 2.2.3 Optimal Thickness of PET Substrate 15 2.2.4 Model Solution of Cantilever Plate Equation 15 2.2.5 Vibration-Induced Electric Potential and Electric Power 18 2.2.6 Static Analysis to Calculate the Optimal Thickness of the PET Substrate 19 2.2.7 Model Analysis and Harmonic Analysis 21 2.2.8 Results of Model Analysis and Harmonic Analysis 23 2.3 The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates 27 2.3.1 Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates 27 2.3.2 Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates 29 2.3.3 Sputtering of Al and ITO Conductive Thin Films on PET Substrates 29 2.3.4 Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering 31 2.3.5 Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions 34 2.3.6 Application of ZnO/PET-Based Generator to Flash Signal LED Module 39 2.3.7 Design and Performance of a Broad Bandwidth Energy Harvesting System 40 2.4 Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators 48 2.4.1 Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates 48 2.4.2 Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 50 2.4.3 Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 51 2.4.4 Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators 52 2.4.5 Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates 54 2.4.6 Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates 56 2.4.7 Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 59 2.4.8 Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 61 2.4.9 Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator 63 2.5 Summary 66 References 67 3 Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators 71 3.1 Introduction 71 3.2 Comparisons between MCTG and SMTG 74 3.2.1 Magnetic Core-Type Generator (MCTG) 74 3.2.2 Sided Magnet-Type Generator (SMTG) 76 3.3 Analysis of Electromagnetic Vibration-Induced Microgenerators 76 3.3.1 Design of Electromagnetic Vibration-Induced Microgenerators 77 3.3.2 Analysis Mode of the Microvibration Structure 78 3.3.3 Analysis Mode of Magnetic Field 81 3.3.4 Evaluation of Various Parameters of Power Output 84 3.4 Analytical Results and Discussion 88 3.4.1 Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring 90 3.4.2 Finite Element Models for Magnetic Density Distribution 93 3.4.3 Power Output Evaluation 97 3.5 Fabrication of Microcoil for Microgenerator 103 3.5.1 Microspring and Induction Coil 103 3.5.2 Microspring and Magnet 105 3.6 Tests and Experiments 106 3.6.1 Measurement System 106 3.6.2 Measurement Results and Discussion 107 3.6.3 Comparison between Measured Results and Analytical Values 110 3.7 Conclusions 112 3.7.1 Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field 112 3.7.2 Fabrication of LTCC Microsensor 112 3.7.3 Measurement and Analysis Results 113 3.8 Summary 113 References 114 4 Design and Fabrication of Rotary Electromagnetic Microgenerator 117 4.1 Introduction 117 4.1.1 Piezoelectric, Thermoelectric, and Electrostatic Generators 119 4.1.2 Vibrational Electromagnetic Generators 119 4.1.3 Rotary Electromagnetic Generators 120 4.1.4 Generator Processes 121 4.1.5 Lithographie Galvanoformung Abformung Process 122 4.1.6 Winding Processes 123 4.1.7 LTCC 123 4.1.8 Printed Circuit Board Processes 124 4.1.9 Finite-Element Simulation and Analytical Solutions 126 4.2 Case 1: Winding Generator 126 4.2.1 Design 127 4.2.2 Analytical Formulation 132 4.2.3 Simulation 134 4.2.4 Fabrication Process 138 4.2.5 Results and Discussion (1) 139 4.2.6 Results and Discussion (2) 142 4.3 Case 2: LTCC Generator 146 4.3.1 Simulation 147 4.3.2 Analytical Theorem of Microgenerator Electromagnetism 148 4.3.3 Simplification 152 4.3.4 Analysis of Vector Magnetic Potential 153 4.3.5 Analytical Solutions for Power Generation 154 4.4 Fabrication 157 4.4.1 LTCC Process 157 4.4.2 Magnet Process 159 4.4.3 Measurement Set-up 160 4.5 Results and Discussion 162 4.5.1 Design 162 4.5.2 Analytical Solutions 168 4.5.3 Fabrication 170 References 178 5 Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters 183 5.1 Introduction 183 5.2 Fundamentals of Electrospinning Technology 187 5.2.1 Introduction to Electrospinning 187 5.2.2 Alignment and Assembly of Nanofibers 190 5.3 Near-Field Electrospinning 191 5.3.1 Introduction and Background 191 5.3.2 Principles of Operation 194 5.3.3 Process and Experiment 196 5.3.4 Summary 202 5.4 Continuous NFES 202 5.4.1 Introduction and Background 202 5.4.2 Principles of Operation 202 5.4.3 Controllability and Continuity 205 5.4.4 Process Characterization 208 5.4.5 Summary 211 5.5 Direct-Write Piezoelectric Nanogenerator 211 5.5.1 Introduction and Background 211 5.5.2 Polyvinylidene Fluoride 212 5.5.3 Theoretical Studies for Realization of Electrospun PVDF Nanofibers 213 5.5.4 Electrospinning of PVDF Nanofibers 216 5.5.5 Detailed Discussion of Process Parameters 219 5.5.6 Experimental Realization of PVDF Nanogenerator 223 5.5.7 Summary 241 5.6 Materials, Structure, and Operation of Nanogenerator with Future Prospects 241 5.6.1 Material and Structural Characteristics 241 5.6.2 Operation of Nanogenerator 243 5.6.3 Summary and Future Prospects 248 5.7 Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate 248 5.7.1 Introduction and Background 248 5.7.2 Working Principle 249 5.7.3 Device Fabrication 249 5.7.4 Experimental Results 251 5.7.5 Summary 252 5.8 Conclusion 253 5.8.1 Near-Field Electrospinning 253 5.8.2 Continuous Near-Field Electrospinning 254 5.8.3 Direct-Write Piezoelectric PVDF 254 5.9 Future Directions 255 5.9.1 NFES Integrated Nanofiber Sensors 255 5.9.2 NFES One-Dimensional Sub-Wavelength Waveguide 256 5.9.3 NFES Biological Applications 257 5.9.4 Direct-Write Piezoelectric PVDF Nanogenerators 258 References 258 Index 265.…”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  3. 5303

    Design and fabrication of self-powered micro-harvesters : rotating and vibrated micro-power systems / by Pan, C. T., Hwang, Y. M., Lin, Liwei, Chen, Yingzhong

    Published 2014
    Table of Contents: “…Machine generated contents note: About the Authors xi Preface xiii Acknowledgments xv 1 Introduction 1 1.1 Background 1 1.2 Energy Harvesters 2 1.2.1 Piezoelectric ZnO Energy Harvester 3 1.2.2 Vibrational Electromagnetic Generators 3 1.2.3 Rotary Electromagnetic Generators 4 1.2.4 NFES Piezoelectric PVDF Energy Harvester 4 1.3 Overview 5 2 Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films 7 2.1 Introduction 7 2.2 Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters 10 2.2.1 Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester 10 2.2.2 Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film 12 2.2.3 Optimal Thickness of PET Substrate 15 2.2.4 Model Solution of Cantilever Plate Equation 15 2.2.5 Vibration-Induced Electric Potential and Electric Power 18 2.2.6 Static Analysis to Calculate the Optimal Thickness of the PET Substrate 19 2.2.7 Model Analysis and Harmonic Analysis 21 2.2.8 Results of Model Analysis and Harmonic Analysis 23 2.3 The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates 27 2.3.1 Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates 27 2.3.2 Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates 29 2.3.3 Sputtering of Al and ITO Conductive Thin Films on PET Substrates 29 2.3.4 Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering 31 2.3.5 Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions 34 2.3.6 Application of ZnO/PET-Based Generator to Flash Signal LED Module 39 2.3.7 Design and Performance of a Broad Bandwidth Energy Harvesting System 40 2.4 Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators 48 2.4.1 Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates 48 2.4.2 Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 50 2.4.3 Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 51 2.4.4 Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators 52 2.4.5 Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates 54 2.4.6 Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates 56 2.4.7 Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 59 2.4.8 Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 61 2.4.9 Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator 63 2.5 Summary 66 References 67 3 Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators 71 3.1 Introduction 71 3.2 Comparisons between MCTG and SMTG 74 3.2.1 Magnetic Core-Type Generator (MCTG) 74 3.2.2 Sided Magnet-Type Generator (SMTG) 76 3.3 Analysis of Electromagnetic Vibration-Induced Microgenerators 76 3.3.1 Design of Electromagnetic Vibration-Induced Microgenerators 77 3.3.2 Analysis Mode of the Microvibration Structure 78 3.3.3 Analysis Mode of Magnetic Field 81 3.3.4 Evaluation of Various Parameters of Power Output 84 3.4 Analytical Results and Discussion 88 3.4.1 Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring 90 3.4.2 Finite Element Models for Magnetic Density Distribution 93 3.4.3 Power Output Evaluation 97 3.5 Fabrication of Microcoil for Microgenerator 103 3.5.1 Microspring and Induction Coil 103 3.5.2 Microspring and Magnet 105 3.6 Tests and Experiments 106 3.6.1 Measurement System 106 3.6.2 Measurement Results and Discussion 107 3.6.3 Comparison between Measured Results and Analytical Values 110 3.7 Conclusions 112 3.7.1 Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field 112 3.7.2 Fabrication of LTCC Microsensor 112 3.7.3 Measurement and Analysis Results 113 3.8 Summary 113 References 114 4 Design and Fabrication of Rotary Electromagnetic Microgenerator 117 4.1 Introduction 117 4.1.1 Piezoelectric, Thermoelectric, and Electrostatic Generators 119 4.1.2 Vibrational Electromagnetic Generators 119 4.1.3 Rotary Electromagnetic Generators 120 4.1.4 Generator Processes 121 4.1.5 Lithographie Galvanoformung Abformung Process 122 4.1.6 Winding Processes 123 4.1.7 LTCC 123 4.1.8 Printed Circuit Board Processes 124 4.1.9 Finite-Element Simulation and Analytical Solutions 126 4.2 Case 1: Winding Generator 126 4.2.1 Design 127 4.2.2 Analytical Formulation 132 4.2.3 Simulation 134 4.2.4 Fabrication Process 138 4.2.5 Results and Discussion (1) 139 4.2.6 Results and Discussion (2) 142 4.3 Case 2: LTCC Generator 146 4.3.1 Simulation 147 4.3.2 Analytical Theorem of Microgenerator Electromagnetism 148 4.3.3 Simplification 152 4.3.4 Analysis of Vector Magnetic Potential 153 4.3.5 Analytical Solutions for Power Generation 154 4.4 Fabrication 157 4.4.1 LTCC Process 157 4.4.2 Magnet Process 159 4.4.3 Measurement Set-up 160 4.5 Results and Discussion 162 4.5.1 Design 162 4.5.2 Analytical Solutions 168 4.5.3 Fabrication 170 References 178 5 Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters 183 5.1 Introduction 183 5.2 Fundamentals of Electrospinning Technology 187 5.2.1 Introduction to Electrospinning 187 5.2.2 Alignment and Assembly of Nanofibers 190 5.3 Near-Field Electrospinning 191 5.3.1 Introduction and Background 191 5.3.2 Principles of Operation 194 5.3.3 Process and Experiment 196 5.3.4 Summary 202 5.4 Continuous NFES 202 5.4.1 Introduction and Background 202 5.4.2 Principles of Operation 202 5.4.3 Controllability and Continuity 205 5.4.4 Process Characterization 208 5.4.5 Summary 211 5.5 Direct-Write Piezoelectric Nanogenerator 211 5.5.1 Introduction and Background 211 5.5.2 Polyvinylidene Fluoride 212 5.5.3 Theoretical Studies for Realization of Electrospun PVDF Nanofibers 213 5.5.4 Electrospinning of PVDF Nanofibers 216 5.5.5 Detailed Discussion of Process Parameters 219 5.5.6 Experimental Realization of PVDF Nanogenerator 223 5.5.7 Summary 241 5.6 Materials, Structure, and Operation of Nanogenerator with Future Prospects 241 5.6.1 Material and Structural Characteristics 241 5.6.2 Operation of Nanogenerator 243 5.6.3 Summary and Future Prospects 248 5.7 Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate 248 5.7.1 Introduction and Background 248 5.7.2 Working Principle 249 5.7.3 Device Fabrication 249 5.7.4 Experimental Results 251 5.7.5 Summary 252 5.8 Conclusion 253 5.8.1 Near-Field Electrospinning 253 5.8.2 Continuous Near-Field Electrospinning 254 5.8.3 Direct-Write Piezoelectric PVDF 254 5.9 Future Directions 255 5.9.1 NFES Integrated Nanofiber Sensors 255 5.9.2 NFES One-Dimensional Sub-Wavelength Waveguide 256 5.9.3 NFES Biological Applications 257 5.9.4 Direct-Write Piezoelectric PVDF Nanogenerators 258 References 258 Index 265.…”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  4. 5304

    Anthology of children's literature /

    Published 1977
    Book
  5. 5305
  6. 5306

    Anthology of children's literature /

    Published 1977
    Book
  7. 5307
  8. 5308
  9. 5309
  10. 5310
  11. 5311
  12. 5312
  13. 5313
  14. 5314
  15. 5315
  16. 5316
  17. 5317

    His own where by Jordan, June, 1936-2002

    Published 2010
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  18. 5318

    His own where by Jordan, June, 1936-2002

    Published 2010
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  19. 5319
  20. 5320

    Principles of water treatment by Howe, Kerry J.

    Published 2012
    Table of Contents: “…Machine generated contents note: PrefaceAcknowledgmentsChapter 1 Introduction1-1 The Importance of Principles1-2 The Importance of SustainabilityReferencesChapter 2 Water Quality and Public Health2-1 Relationship between Water Quality and Public Health2-2 Source Waters for Municipal Drinking Water Systems2-3 Regulations of Water Treatment in the United States2-4 Evolving Trends and Challenges in Drinking Water Treatment2-5 Summary and Study GuideReferencesChapter 3 Process Selection3-1 Process Selection Based on Contaminant Properties3-2 Other Considerations in Process Selection3-4 Design and Selection of Process Trains3-5 Summary and Study GuideHomework ProblemsReferencesChapter 4 Fundamental Principles of Environmental Engineering4-1 Units of Expression for Chemical Concentrations4-2 Chemical Equilibrium4-3 Chemical Kinetics4-4 Reactions Used in Water Treatment4-5 Mass Balance Analysis4-6 Introduction to Reactors and Reactor Analysis4-7 Reactions in Batch Reactors4-8 Hydraulic Characteristics of Ideal Flow Reactors4-9 Reactions in Ideal Flow Reactors4-10 Measuring the Hydraulic Characteristics of Flow Reactors with Tracer Tests4-11 Describing the Hydraulic Performance of Real Flow Reactors4-12 Reactions in Real Flow Reactors4-13 Introduction to Mass Transfer4-14 Molecular Diffusion4-15 Diffusion Coefficients4-16 Models and Correlations for Mass Transfer at an Interface4-17 Evaluating the Concentration Gradient with Operating Diagrams4-18 Summary and Study GuideHomework ProblemsReferencesChapter 5 Coagulation and Flocculation5-1 Role of Coagulation and Flocculation in Water Treatment5-2 Stability of Particles in Water5-3 Theory of Coagulation5-4 Coagulation Practice5-5 Principles of Mixing for Coagulation and Flocculation5-6 Rapid Mix Practice5-7 Theory of Flocculation5-8 Flocculation Practice5-9 Energy and Sustainability Considerations5-10 Summary and Study GuideHomework ProblemsReferencesChapter 6 Sedimentation6-1 Principles of Discrete (Type I) Particle Settling6-2 Discrete Settling in Ideal Sedimentation Basins6-3 Principles of Flocculant (Type II) Particle Settling6-4 Principles of Hindered (Type III) Settling6-5 Conventional Sedimentation Basin Design6-6 Alternative Sedimentation Processes6-7 Physical Factors Affecting Sedimentation6-8 Energy and Sustainability Considerations6-9 Summary and Study GuideHomework ProblemsReferencesChapter 7 Rapid Granular Filtration7-1 Physical Description of a Rapid Granular Filter7-2 Process Description of Rapid Filtration7-3 Particle Capture in Granular Filtration7-4 Head Loss through a Clean Filter Bed7-5 Modeling of Performance and Optimization7-6 Backwash Hydraulics7-7 Energy and Sustainability Considerations7-8 Summary and Study GuideHomework ProblemsReferencesChapter 8 Membrane Filtration8-1 Classification of Membrane Processes8-2 Comparison to Rapid Granular Filtration8-3 Principal Features of Membrane Filtration Equipment8-4 Process Description of Membrane Filtration8-5 Particle Capture in Membrane Filtration8-6 Hydraulics of Flow through Membrane Filters8-7 Membrane Fouling8-8 Sizing of Membrane Skids8-9 Energy and Sustainability Considerations8-10 Summary and Study GuideHomework ProblemsReferencesChapter 9 Reverse Osmosis9-1 Principal Features of a Reverse Osmosis Facility9-2 Osmotic Pressure and Reverse Osmosis9-3 Mass Transfer of Water and Solutes through RO Membranes9-4 Performance Dependence on Temperature and Pressure9-5 Concentration Polarization9-6 Fouling and Scaling9-7 Element Selection and Membrane Array Design9-8 Energy and Sustainability Considerations9-9 Summary and Study GuideHomework ProblemsReferencesChapter 10 Adsorption and Ion Exchange10-1 Introduction to the Adsorption Process10-2 Adsorption Equilibrium10-3 Adsorption Kinetics10-4 Introduction to the Ion Exchange Process10-5 Ion Exchange Equilibrium10-6 Ion Exchange Kinetics10-7 Fixed Bed Contactors10-8 Suspended Media Reactors10-9 Energy and Sustainability Considerations10-10 Summary and Learning Objectives10-11 Homework ProblemsReferencesChapter 11 Air stripping and aeration11-1 Types of Air Stripping and Aeration Contactors11-2 Gas-Liquid Equilibrium11-3 Fundamentals of Packed Tower Air Stripping11-4 Design and Analysis of Packed Tower Air Stripping11-5 Energy and Sustainability Considerations11-6 Summary and Study GuideHomework ProblemsReferencesChapter 12 Advanced Oxidation12-1 Introduction to Advanced Oxidation12-2 Ozonation as an Advanced Oxidation Process12-3 Hydrogen Peroxide/Ozone Process12-4 Hydrogen Peroxide/UV Light Process12-5 Energy and Sustainability Considerations12-6 Summary and Study GuideHomework ProblemsReferencesChapter 13 Disinfection13-1 Disinfection Agents and Systems13-2 Disinfection with Free and Combined Chlorine13-3 Disinfection with Chlorine Dioxide13-4 Disinfection with Ozone13-5 Disinfection with Ultraviolet Light13-6 Disinfection Kinetics13-7 Disinfection Kinetics in Real Flow Reactors13-8 Design of Disinfection Contactors With Low Dispersion13-9 Disinfection Byproducts13-10 Residual Maintenance13-11 Energy and Sustainability Considerations13-12 Summary and Study GuideHomework ProblemsReferences14 Residuals Management14-1 Defining the Problem14-2 Physical, Chemical, and Biological Properties of Residuals14-3 Alum and Iron Coagulation Sludge14-4 Liquid Wastes From Granular Media Filters14-5 Management of Residual Liquid Streams14-6 Management of Residual Sludge14-7 Ultimate Reuse and Disposal of Semisolid Residuals14-8 Summary and Study GuideHomework ProblemsReferencesAppendix A Conversion FactorsAppendix B Physical Properties of Selected Gases and Composition of AirB-1 Density of Air at Other TemperaturesB-2 Change in Atmospheric Pressure with ElevationAppendix C Physical Properties of WaterAppendix D Periodic TableAppendix E Electronic Resources available on the John Wiley and Sons website for this TextbookIndex.…”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook