Search Results - Computational complexity theory
Suggested Topics within your search.
Suggested Topics within your search.
- Computational complexity 40
- Economics 32
- Economics/Management Science 28
- Physics 26
- Complexity 24
- History 24
- Mathematics 24
- Operations Research/Decision Theory 22
- Computer science 20
- Engineering 18
- Mathematical models 18
- SOCIAL SCIENCE 16
- Social sciences 16
- System theory 16
- Data processing 14
- General 14
- Histoire 14
- History and criticism 14
- Machine theory 14
- Philosophy 14
- Complexity, Computational 12
- Computer Appl. in Social and Behavioral Sciences 12
- Criticism and interpretation 12
- Histoire et critique 12
- Mathematical optimization 12
- Nonlinear theories 12
- Optimization 12
- Computer Science 10
- Discrete Mathematics in Computer Science 10
- Economics, Mathematical 10
-
141
Technocrats of the Imagination : Art, Technology, and the Military-Industrial Avant-Garde /
Published 2020Full text available:
Electronic eBook -
142
Technocrats of the Imagination : Art, Technology, and the Military-Industrial Avant-Garde /
Published 2020Full text available:
Electronic eBook -
143
Financial simulation modeling in Excel a step-by-step guide /
Published 2011An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
144
Financial simulation modeling in Excel a step-by-step guide /
Published 2011An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
145
-
146
-
147
-
148
-
149
-
150
-
151
Conversations with Christian Metz : Selected Interviews on Film Theory (1970-1991) /
Published 2017Full text available:
Electronic eBook -
152
Conversations with Christian Metz : Selected Interviews on Film Theory (1970-1991) /
Published 2017Full text available:
Electronic eBook -
153
Multicriteria decision aid and artificial intelligence links, theory and applications /
Published 2013Table of Contents: “…Machine generated contents note: List of Contributors Preface Part One The Contributions of Intelligent Techniques in Multicriteria Decision Aiding 1 Computational Intelligence Techniques for Multicriteria Decision Aiding: An Overview 1.1 Introduction 1.2 The MCDA Paradigm 1.2.1 Modeling Process 1.2.2 Methodological Approaches 1.3 Computational Intelligence in MCDA 1.3.1 Statistical Learning and Data Mining 1.3.2 Fuzzy Modeling 1.3.3 Metaheuristics 1.4 Conclusions References 2 Intelligent Decision Support Systems 2.1 Introduction 2.2 Fundamentals of Human Decision Making 2.3 Decision Support System 2.4 Intelligent Decision Support Systems 2.4.1 Artificial Neural Networks for Intelligent Decision Support 2.4.2 Fuzzy Logic for Intelligent Decision Support 2.4.3 Expert Systems for Intelligent Decision Support 2.4.4 Evolutionary Computing for Intelligent Decision Support 2.4.5 Intelligent Agents for Intelligent Decision Support 2.5 Evaluating Intelligent Decision Support Systems 2.5.1 Determining Evaluation Criteria 2.5.2 Multi-Criteria Model for IDSS Assessment 2.6 Summary and Future Trends References Part Two Intelligent Technologies for Decision Support and Preference Modeling 3 Designing Distributed Multi-Criteria Decision Support Systems for Complex and Uncertain Situations 3.1 Introduction 3.2 Example Applications 3.3 Key Challenges 3.4 Making Trade-offs: Multi-criteria Decision Analysis 3.4.1 Multi-attribute Decision Support 3.4.2 Making Trade-offs Under Uncertainty 3.5 Exploring the Future: Scenario-based Reasoning 3.6 Making Robust Decisions: Combining MCDA and SBR 3.6.1 Decisions Under Uncertainty: The Concept of Robustness 3.6.2 Combining Scenarios and MCDA 3.6.3 Collecting, Sharing and Processing Information: A Distributed Approach 3.6.4 Keeping Track of Future Developments: Constructing Comparable Scenarios 3.6.5 Respecting Constraints and Requirements: Scenario Management 3.6.6 Assisting Evaluation: Assessing Large Numbers of Scenarios 3.7 Discussion 3.8 Conclusion References 4 Preference Representation with Ontologies 4.1 Introduction 4.1.1 Structure of the Chapter 4.2 Ontology-based Preference Models 4.3 Maintaining the User's Profile up to Date 4.4 Decision Making Methods Exploiting the Preference Information Stored in Ontologies 4.4.1 Recommendation Based on Aggregation 4.4.2 Recommendation Based on Similarities 4.4.3 Recommendation Based on Rules 4.5 Discussion and Open Questions References Part Three Decision Models 5 Neural Networks in Multicriteria Decision Support 5.1 Introduction 5.2 Basic Concepts of Neural Networks 5.2.1 Neural Networks for Intelligent Decision Support 5.3 Basics in Multicriteria Decision Aid 5.3.1 MCDM Problems 5.3.2 Solutions of MCDM Problems 5.4 Neural Networks and Multicriteria Decision Support 5.4.1 Review of Neural Network Applications to MCDM Problems 5.4.2 Discussion 5.5 Summary and Conclusions References 6 Rule-Based Approach to Multicriteria Ranking 6.1 Introduction 6.2 Problem Setting 6.3 Pairwise Comparison Table (PCT) 6.4 Rough Approximation of Outranking and Non-outranking Relations 6.5 Induction and Application of Decision Rules 6.6 Exploitation of Preference Graphs 6.7 Illustrative Example 6.8 Summary and Conclusions References 7 About the Application of Evidence Theory in MultiCriteria Decision Aid 7.1 Introduction 7.2 Evidence Theory: Some Concepts 7.2.1 Knowledge Model 7.2.2 Combination 7.2.3 Decision Making 7.3 New Concepts in Evidence Theory for MCDA 7.3.1 First Belief Dominance 7.3.2 RBBD Concept 7.4 Multicriteria Methods modeled by Evidence Theory 7.4.1 Evidential Reasoning Approach 7.4.2 DS/AHP 7.4.3 DISSET 7.4.4 A Choice Model Inspired by ELECTRE I 7.4.5 A Ranking Model Inspired by Xu et al.'…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
154
Multicriteria decision aid and artificial intelligence links, theory and applications /
Published 2013Table of Contents: “…Machine generated contents note: List of Contributors Preface Part One The Contributions of Intelligent Techniques in Multicriteria Decision Aiding 1 Computational Intelligence Techniques for Multicriteria Decision Aiding: An Overview 1.1 Introduction 1.2 The MCDA Paradigm 1.2.1 Modeling Process 1.2.2 Methodological Approaches 1.3 Computational Intelligence in MCDA 1.3.1 Statistical Learning and Data Mining 1.3.2 Fuzzy Modeling 1.3.3 Metaheuristics 1.4 Conclusions References 2 Intelligent Decision Support Systems 2.1 Introduction 2.2 Fundamentals of Human Decision Making 2.3 Decision Support System 2.4 Intelligent Decision Support Systems 2.4.1 Artificial Neural Networks for Intelligent Decision Support 2.4.2 Fuzzy Logic for Intelligent Decision Support 2.4.3 Expert Systems for Intelligent Decision Support 2.4.4 Evolutionary Computing for Intelligent Decision Support 2.4.5 Intelligent Agents for Intelligent Decision Support 2.5 Evaluating Intelligent Decision Support Systems 2.5.1 Determining Evaluation Criteria 2.5.2 Multi-Criteria Model for IDSS Assessment 2.6 Summary and Future Trends References Part Two Intelligent Technologies for Decision Support and Preference Modeling 3 Designing Distributed Multi-Criteria Decision Support Systems for Complex and Uncertain Situations 3.1 Introduction 3.2 Example Applications 3.3 Key Challenges 3.4 Making Trade-offs: Multi-criteria Decision Analysis 3.4.1 Multi-attribute Decision Support 3.4.2 Making Trade-offs Under Uncertainty 3.5 Exploring the Future: Scenario-based Reasoning 3.6 Making Robust Decisions: Combining MCDA and SBR 3.6.1 Decisions Under Uncertainty: The Concept of Robustness 3.6.2 Combining Scenarios and MCDA 3.6.3 Collecting, Sharing and Processing Information: A Distributed Approach 3.6.4 Keeping Track of Future Developments: Constructing Comparable Scenarios 3.6.5 Respecting Constraints and Requirements: Scenario Management 3.6.6 Assisting Evaluation: Assessing Large Numbers of Scenarios 3.7 Discussion 3.8 Conclusion References 4 Preference Representation with Ontologies 4.1 Introduction 4.1.1 Structure of the Chapter 4.2 Ontology-based Preference Models 4.3 Maintaining the User's Profile up to Date 4.4 Decision Making Methods Exploiting the Preference Information Stored in Ontologies 4.4.1 Recommendation Based on Aggregation 4.4.2 Recommendation Based on Similarities 4.4.3 Recommendation Based on Rules 4.5 Discussion and Open Questions References Part Three Decision Models 5 Neural Networks in Multicriteria Decision Support 5.1 Introduction 5.2 Basic Concepts of Neural Networks 5.2.1 Neural Networks for Intelligent Decision Support 5.3 Basics in Multicriteria Decision Aid 5.3.1 MCDM Problems 5.3.2 Solutions of MCDM Problems 5.4 Neural Networks and Multicriteria Decision Support 5.4.1 Review of Neural Network Applications to MCDM Problems 5.4.2 Discussion 5.5 Summary and Conclusions References 6 Rule-Based Approach to Multicriteria Ranking 6.1 Introduction 6.2 Problem Setting 6.3 Pairwise Comparison Table (PCT) 6.4 Rough Approximation of Outranking and Non-outranking Relations 6.5 Induction and Application of Decision Rules 6.6 Exploitation of Preference Graphs 6.7 Illustrative Example 6.8 Summary and Conclusions References 7 About the Application of Evidence Theory in MultiCriteria Decision Aid 7.1 Introduction 7.2 Evidence Theory: Some Concepts 7.2.1 Knowledge Model 7.2.2 Combination 7.2.3 Decision Making 7.3 New Concepts in Evidence Theory for MCDA 7.3.1 First Belief Dominance 7.3.2 RBBD Concept 7.4 Multicriteria Methods modeled by Evidence Theory 7.4.1 Evidential Reasoning Approach 7.4.2 DS/AHP 7.4.3 DISSET 7.4.4 A Choice Model Inspired by ELECTRE I 7.4.5 A Ranking Model Inspired by Xu et al.'…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
155
Adaptive control approach for software quality improvement
Published 2011An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
156
Adaptive control approach for software quality improvement
Published 2011An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
157
-
158
-
159
-
160