Search Results - "noise"

  1. 301

    Recent advances in financial engineering proceedings of the KIER-TMU International Workshop on Financial Engineering 2009 : Otemachi, Sankei Plaza, Tokyo, 3-4 August 2009 /

    Published 2010
    Table of Contents: “…Masuda -- A note on a statistical hypothesis testing for removing noise by the random matrix theory and its application to co-volatility matrices / T. …”
    An electronic book accessible through the World Wide Web; click to view
    Electronic Conference Proceeding eBook
  2. 302

    Public modalities rhetoric, culture, media, and the shape of public life /

    Published 2010
    Table of Contents: “…Du Bois and the New Negro Movement / Eric King Watts -- "VIII. lowghost publicity, or, my vocabulary did this to me" : an excerpt from the Seminar of Jack Spicer, book III : on dead letters, freakish noises, necropolitics, fire-engines, and the missing couch as channeled by and dictated to Dale Smith and Joshua Gunn -- Everyday life and death in a nuclear world : stories from Fernald / Phaedra C. …”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  3. 303

    Public modalities rhetoric, culture, media, and the shape of public life /

    Published 2010
    Table of Contents: “…Du Bois and the New Negro Movement / Eric King Watts -- "VIII. lowghost publicity, or, my vocabulary did this to me" : an excerpt from the Seminar of Jack Spicer, book III : on dead letters, freakish noises, necropolitics, fire-engines, and the missing couch as channeled by and dictated to Dale Smith and Joshua Gunn -- Everyday life and death in a nuclear world : stories from Fernald / Phaedra C. …”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  4. 304

    Teaching with the brain in mind by Jensen, Eric, 1950-

    Published 2005
    Table of Contents: “…How seating, temperature, lighting, noise, and overall building design affect learning. …”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  5. 305

    Synesthetic design : handbook for a multisensory approach / by Haverkamp, Michael

    Published 2013
    Table of Contents: “…Holistic design : Cumulation of sensory contributions : Segregation or integration ; Perceptual conflicts -- The choice of customer-effective strategies : Assistance in decisions-making ; Examples of application ; Human-computer interaction -- Elementary forms : Basic forms of perception ; Elementary design -- Visualization of noise and music : Artistic and technical visualization ; Musical notation, graphics, and film -- Perception and emotion -- Future perspectives of synesthetic design : Design with all senses: for the senses ; Robustness ; Sustainability.…”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  6. 306

    The dynamic brain : an exploration of neuronal variability and its functional significance /

    Published 2011
    Table of Contents: “…Ramsden, and Anna Wang Roe -- Phase resetting in the presence of noise and heterogeneity / Srisairam Achuthan ... …”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  7. 307

    Synesthetic design : handbook for a multisensory approach / by Haverkamp, Michael

    Published 2013
    Table of Contents: “…Holistic design : Cumulation of sensory contributions : Segregation or integration ; Perceptual conflicts -- The choice of customer-effective strategies : Assistance in decisions-making ; Examples of application ; Human-computer interaction -- Elementary forms : Basic forms of perception ; Elementary design -- Visualization of noise and music : Artistic and technical visualization ; Musical notation, graphics, and film -- Perception and emotion -- Future perspectives of synesthetic design : Design with all senses: for the senses ; Robustness ; Sustainability.…”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  8. 308

    The dynamic brain : an exploration of neuronal variability and its functional significance /

    Published 2011
    Table of Contents: “…Ramsden, and Anna Wang Roe -- Phase resetting in the presence of noise and heterogeneity / Srisairam Achuthan ... …”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  9. 309

    Affective Images : Post-apartheid Documentary Perspectives / by Kesting, Marietta

    Published 2017
    Full text available:
    Electronic eBook
  10. 310

    Teaching with the brain in mind by Jensen, Eric, 1950-

    Published 2005
    Table of Contents: “…How seating, temperature, lighting, noise, and overall building design affect learning. …”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  11. 311

    Affective Images : Post-apartheid Documentary Perspectives / by Kesting, Marietta

    Published 2017
    Full text available:
    Electronic eBook
  12. 312

    From Curlers to Chainsaws : Women and Their Machines /

    Published 2016
    Table of Contents: “…Mary Quade -- Old Iron: A RestorationMaureen Stanton -- All Flesh Is Grass; Karen Salyer McElmurray -- Driven; Ana Maria Spagna -- More Than Noise; Stage and World; Debra Marquart -- The Microphone Erotic; Elizabeth MacLeod Walls -- I, Phone; Melissa A. …”
    Full text available:
    Electronic eBook
  13. 313

    From Curlers to Chainsaws : Women and Their Machines /

    Published 2016
    Table of Contents: “…Mary Quade -- Old Iron: A RestorationMaureen Stanton -- All Flesh Is Grass; Karen Salyer McElmurray -- Driven; Ana Maria Spagna -- More Than Noise; Stage and World; Debra Marquart -- The Microphone Erotic; Elizabeth MacLeod Walls -- I, Phone; Melissa A. …”
    Full text available:
    Electronic eBook
  14. 314

    Statistical disclosure control

    Published 2012
    Table of Contents: “…Machine generated contents note: Preface vii Acknowledgements ix 1 Introduction 1 1.1 Concepts and Definitions 2 1.1.1 Disclosure 2 1.1.2 Statistical disclosure control 2 1.1.3 Tabular data 3 1.1.4 Microdata 3 1.1.5 Risk and utility 4 1.2 An approach to Statistical Disclosure Control 6 1.3 The chapters of the handbook 8 2 Ethics, Principles, Guidelines and Regulations, a general background 9 2.1 Introduction 9 2.2 Ethical codes and the new ISI code 9 2.2.1 ISI Declaration on Professional Ethics 10 2.2.2 New ISI Declaration on Professional Ethics 10 2.2.3 European Statistics Code of Practice 14 2.3 UNECE Principles and guidelines 14 2.4 Laws 17 2.4.1 Committee on Statistical Confidentiality 18 2.4.2 European Statistical System Committee 18 3 Microdata 21 3.1 Introduction 21 3.2 Microdata Concepts 22 3.2.1 Stage 1: Assess need for confidentiality protection 22 3.2.2 Stage 2: Key characteristics and uses of microdata 24 3.2.3 Stage 3: Disclosure risk 27 3.2.4 Stage 4: Protection methods 29 3.2.5 Stage 5: Implementation 30 3.3 Definitions of disclosure 32 3.3.1 Definitions of disclosure scenarios 33 3.4 Definitions of Disclosure Risk 34 3.4.1 Disclosure risk for categorical quasi-identifiers 35 3.4.2 Disclosure risk for continuous quasi-identifiers 37 3.5 Estimating Re-identification Risk 39 3.5.1 Individual risk based on the sample: threshold rule 39 3.5.2 Estimating individual risk using sampling weights 39 3.5.3 Estimating individual risk by Poisson model 42 3.5.4 Further models that borrow information from other sources 43 3.5.5 Estimating per record risk via heuristics 44 3.5.6 Assessing risk via record linkage 45 3.6 Non-Perturbative Microdata Masking 45 3.6.1 Sampling 46 3.6.2 Global recoding 46 3.6.3 Top and bottom coding 47 3.6.4 Local suppression 47 3.7 Perturbative Microdata Masking 48 3.7.1 Additive noise masking 48 3.7.2 Multiplicative noise masking 52 3.7.3 Microaggregation 54 3.7.4 Data swapping and rank swapping 66 3.7.5 Data shuffling 66 3.7.6 Rounding 67 3.7.7 Resampling 67 3.7.8 PRAM 67 3.7.9 MASSC 71 3.8 Synthetic and Hybrid Data 71 3.8.1 Fully synthetic data 72 3.8.2 Partially synthetic data 77 3.8.3 Hybrid data 79 3.8.4 Pros and cons of synthetic and hybrid data 88 3.9 Information Loss in Microdata 91 3.9.1 Information loss measures for continuous data 92 3.9.2 Information loss measures for categorical data 99 3.10 Release of multiple files from the same microdata set 101 3.11 Software 102 3.11.1 _-ARGUS 102 3.11.2 sdcMicro 103 3.11.3 IVEware 106 3.12 Case Studies 106 3.12.1 Microdata files at Statistics Netherlands 106 3.12.2 The European Labour Force Survey Microdata for Research Purposes 108 3.12.3 The European Structure of Earnings Survey Microdata for Research Purposes 111 3.12.4 NHIS Linked Mortality Data Public Use File, USA 117 3.12.5 Other real case instances 119 4 Magnitude tabular data 121 4.1 Introduction 121 4.1.1 Magnitude Tabular Data: Basic Terminology 121 4.1.2 Complex tabular data structures: hierarchical and linked tables 122 4.1.3 Risk Concepts 124 4.1.4 Protection Concepts 127 4.1.5 Information Loss Concepts 127 4.1.6 Implementation: Software, Guidelines and Case Study 127 4.2 Disclosure Risk Assessment I: Primary Sensitive Cells 128 4.2.1 Intruder Scenarios 128 4.2.2 Sensitivity rules 129 4.3 Disclosure Risk Assessment II: Secondary risk assessment 140 4.3.1 Feasibility Interval 141 4.3.2 Protection Level 142 4.3.3 Singleton and multi cell disclosure 143 4.3.4 Risk models for hierarchical and linked tables 144 4.4 Non-Perturbative Protection Methods 145 4.4.1 Global Recoding 145 4.4.2 The Concept of Cell Suppression 145 4.4.3 Algorithms for Secondary Cell Suppression 146 4.4.4 Secondary Cell Suppression in Hierarchical and Linked Tables 149 4.5 Perturbative Protection Methods 151 4.5.1 A pre-tabular method: Multiplicative Noise 152 4.5.2 A Post-tabular Method: Controlled Tabular Adjustment 153 4.6 Information Loss Measures for Tabular Data 153 4.6.1 Cell Costs for Cell Suppression 153 4.6.2 Cell Costs for CTA 154 4.6.3 Information Loss Measures to Evaluate the Outcome of Table Protection 155 4.7 Software for Tabular Data Protection 155 4.7.1 Empirical comparison of cell suppression algorithms 156 4.8 Guidelines: Setting up an efficient table model systematically 160 4.8.1 Defining Spanning Variables 161 4.8.2 Response Variables and Mapping Rules 162 4.9 Case Studies 164 4.9.1 Response Variables and Mapping Rules of the Case Study 164 4.9.2 Spanning Variables of the Case Study 165 4.9.3 Analysing the Tables of the Case Study 165 4.9.4 Software Issues of the Case Study 167 5 Frequency tables 169 5.1 Introduction 169 5.2 Disclosure risks 169 5.3 Methods 176 5.4 Post-tabular methods 178 5.4.1 Cell Suppression 178 5.4.2 ABS Cell Perturbation 179 5.4.3 Rounding 179 5.5 Information loss 184 5.6 Software 186 5.6.1 Introduction 186 5.7 Case Studies 188 5.7.1 UK Census 188 5.7.2 Australian and New Zealand Censuses 190 6 Data Access Issues 193 6.1 Introduction 193 6.2 Research Data Centres 193 6.3 Remote Execution 194 6.4 Remote Access 195 6.5 Licensing 196 6.6 Guidelines on output checking 196 6.6.1 Introduction 196 6.6.2 General approach 197 6.6.3 Rules for output checking 199 6.6.4 Organizational/procedural aspects of output checking 208 6.6.5 Researcher training 215 6.7 Additional issues concerning data access 218 6.7.1 Examples of disclaimers 218 6.7.2 Output description 218 6.8 Case Studies 219 6.8.1 The U.S. …”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  15. 315

    Statistical disclosure control

    Published 2012
    Table of Contents: “…Machine generated contents note: Preface vii Acknowledgements ix 1 Introduction 1 1.1 Concepts and Definitions 2 1.1.1 Disclosure 2 1.1.2 Statistical disclosure control 2 1.1.3 Tabular data 3 1.1.4 Microdata 3 1.1.5 Risk and utility 4 1.2 An approach to Statistical Disclosure Control 6 1.3 The chapters of the handbook 8 2 Ethics, Principles, Guidelines and Regulations, a general background 9 2.1 Introduction 9 2.2 Ethical codes and the new ISI code 9 2.2.1 ISI Declaration on Professional Ethics 10 2.2.2 New ISI Declaration on Professional Ethics 10 2.2.3 European Statistics Code of Practice 14 2.3 UNECE Principles and guidelines 14 2.4 Laws 17 2.4.1 Committee on Statistical Confidentiality 18 2.4.2 European Statistical System Committee 18 3 Microdata 21 3.1 Introduction 21 3.2 Microdata Concepts 22 3.2.1 Stage 1: Assess need for confidentiality protection 22 3.2.2 Stage 2: Key characteristics and uses of microdata 24 3.2.3 Stage 3: Disclosure risk 27 3.2.4 Stage 4: Protection methods 29 3.2.5 Stage 5: Implementation 30 3.3 Definitions of disclosure 32 3.3.1 Definitions of disclosure scenarios 33 3.4 Definitions of Disclosure Risk 34 3.4.1 Disclosure risk for categorical quasi-identifiers 35 3.4.2 Disclosure risk for continuous quasi-identifiers 37 3.5 Estimating Re-identification Risk 39 3.5.1 Individual risk based on the sample: threshold rule 39 3.5.2 Estimating individual risk using sampling weights 39 3.5.3 Estimating individual risk by Poisson model 42 3.5.4 Further models that borrow information from other sources 43 3.5.5 Estimating per record risk via heuristics 44 3.5.6 Assessing risk via record linkage 45 3.6 Non-Perturbative Microdata Masking 45 3.6.1 Sampling 46 3.6.2 Global recoding 46 3.6.3 Top and bottom coding 47 3.6.4 Local suppression 47 3.7 Perturbative Microdata Masking 48 3.7.1 Additive noise masking 48 3.7.2 Multiplicative noise masking 52 3.7.3 Microaggregation 54 3.7.4 Data swapping and rank swapping 66 3.7.5 Data shuffling 66 3.7.6 Rounding 67 3.7.7 Resampling 67 3.7.8 PRAM 67 3.7.9 MASSC 71 3.8 Synthetic and Hybrid Data 71 3.8.1 Fully synthetic data 72 3.8.2 Partially synthetic data 77 3.8.3 Hybrid data 79 3.8.4 Pros and cons of synthetic and hybrid data 88 3.9 Information Loss in Microdata 91 3.9.1 Information loss measures for continuous data 92 3.9.2 Information loss measures for categorical data 99 3.10 Release of multiple files from the same microdata set 101 3.11 Software 102 3.11.1 _-ARGUS 102 3.11.2 sdcMicro 103 3.11.3 IVEware 106 3.12 Case Studies 106 3.12.1 Microdata files at Statistics Netherlands 106 3.12.2 The European Labour Force Survey Microdata for Research Purposes 108 3.12.3 The European Structure of Earnings Survey Microdata for Research Purposes 111 3.12.4 NHIS Linked Mortality Data Public Use File, USA 117 3.12.5 Other real case instances 119 4 Magnitude tabular data 121 4.1 Introduction 121 4.1.1 Magnitude Tabular Data: Basic Terminology 121 4.1.2 Complex tabular data structures: hierarchical and linked tables 122 4.1.3 Risk Concepts 124 4.1.4 Protection Concepts 127 4.1.5 Information Loss Concepts 127 4.1.6 Implementation: Software, Guidelines and Case Study 127 4.2 Disclosure Risk Assessment I: Primary Sensitive Cells 128 4.2.1 Intruder Scenarios 128 4.2.2 Sensitivity rules 129 4.3 Disclosure Risk Assessment II: Secondary risk assessment 140 4.3.1 Feasibility Interval 141 4.3.2 Protection Level 142 4.3.3 Singleton and multi cell disclosure 143 4.3.4 Risk models for hierarchical and linked tables 144 4.4 Non-Perturbative Protection Methods 145 4.4.1 Global Recoding 145 4.4.2 The Concept of Cell Suppression 145 4.4.3 Algorithms for Secondary Cell Suppression 146 4.4.4 Secondary Cell Suppression in Hierarchical and Linked Tables 149 4.5 Perturbative Protection Methods 151 4.5.1 A pre-tabular method: Multiplicative Noise 152 4.5.2 A Post-tabular Method: Controlled Tabular Adjustment 153 4.6 Information Loss Measures for Tabular Data 153 4.6.1 Cell Costs for Cell Suppression 153 4.6.2 Cell Costs for CTA 154 4.6.3 Information Loss Measures to Evaluate the Outcome of Table Protection 155 4.7 Software for Tabular Data Protection 155 4.7.1 Empirical comparison of cell suppression algorithms 156 4.8 Guidelines: Setting up an efficient table model systematically 160 4.8.1 Defining Spanning Variables 161 4.8.2 Response Variables and Mapping Rules 162 4.9 Case Studies 164 4.9.1 Response Variables and Mapping Rules of the Case Study 164 4.9.2 Spanning Variables of the Case Study 165 4.9.3 Analysing the Tables of the Case Study 165 4.9.4 Software Issues of the Case Study 167 5 Frequency tables 169 5.1 Introduction 169 5.2 Disclosure risks 169 5.3 Methods 176 5.4 Post-tabular methods 178 5.4.1 Cell Suppression 178 5.4.2 ABS Cell Perturbation 179 5.4.3 Rounding 179 5.5 Information loss 184 5.6 Software 186 5.6.1 Introduction 186 5.7 Case Studies 188 5.7.1 UK Census 188 5.7.2 Australian and New Zealand Censuses 190 6 Data Access Issues 193 6.1 Introduction 193 6.2 Research Data Centres 193 6.3 Remote Execution 194 6.4 Remote Access 195 6.5 Licensing 196 6.6 Guidelines on output checking 196 6.6.1 Introduction 196 6.6.2 General approach 197 6.6.3 Rules for output checking 199 6.6.4 Organizational/procedural aspects of output checking 208 6.6.5 Researcher training 215 6.7 Additional issues concerning data access 218 6.7.1 Examples of disclaimers 218 6.7.2 Output description 218 6.8 Case Studies 219 6.8.1 The U.S. …”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  16. 316

    Meet me with your black drawers on my life in music / by Cheatham, Jeannie

    Published 2006
    Table of Contents: “…-- Beelzebub and the mad Mexican -- Make a joyful noise! -- New mule kickin' in our stall -- Blues on the omnibus -- Blow out at the Belly Up Tavern and the birth of three -- Generations of the blues -- Mr. …”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  17. 317

    Meet me with your black drawers on my life in music / by Cheatham, Jeannie

    Published 2006
    Table of Contents: “…-- Beelzebub and the mad Mexican -- Make a joyful noise! -- New mule kickin' in our stall -- Blues on the omnibus -- Blow out at the Belly Up Tavern and the birth of three -- Generations of the blues -- Mr. …”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  18. 318

    Principles of GNSS, inertial, and multisensor integrated navigation systems / by Groves, Paul D. (Paul David)

    Published 2013
    Table of Contents: “…Machine generated contents note: ch. 1 Introduction -- 1.1.Fundamental Concepts -- 1.2.Dead Reckoning -- 1.3.Position Fixing -- 1.3.1.Position-Fixing Methods -- 1.3.2.Signal-Based Positioning -- 1.3.3.Environmental Feature Matching -- 1.4.The Navigation System -- 1.4.1.Requirements -- 1.4.2.Context -- 1.4.3.Integration -- 1.4.4.Aiding -- 1.4.5.Assistance and Cooperation -- 1.4.6.Fault Detection -- 1.5.Overview of the Book -- References -- ch. 2 Coordinate Frames, Kinematics, and the Earth -- 2.1.Coordinate Frames -- 2.1.1.Earth-Centered Inertial Frame -- 2.1.2.Earth-Centered Earth-Fixed Frame -- 2.1.3.Local Navigation Frame -- 2.1.4.Local Tangent-Plane Frame -- 2.1.5.Body Frame -- 2.1.6.Other Frames -- 2.2.Attitude, Rotation, and Resolving Axes Transformations -- 2.2.1.Euler Attitude -- 2.2.2.Coordinate Transformation Matrix -- 2.2.3.Quaternion Attitude -- 2.2.4.Rotation Vector -- 2.3.Kinematics -- 2.3.1.Angular Rate -- 2.3.2.Cartesian Position -- 2.3.3.Velocity -- 2.3.4.Acceleration -- 2.3.5.Motion with Respect to a Rotating Reference Frame -- 2.4.Earth Surface and Gravity Models -- 2.4.1.The Ellipsoid Model of the Earth's Surface -- 2.4.2.Curvilinear Position -- 2.4.3.Position Conversion -- 2.4.4.The Geoid, Orthometric Height, and Earth Tides -- 2.4.5.Projected Coordinates -- 2.4.6.Earth Rotation -- 2.4.7.Specific Force, Gravitation, and Gravity -- 2.5.Frame Transformations -- 2.5.1.Inertial and Earth Frames -- 2.5.2.Earth and Local Navigation Frames -- 2.5.3.Inertial and Local Navigation Frames -- 2.5.4.Earth and Local Tangent-Plane Frames -- 2.5.5.Transposition of Navigation Solutions -- References -- ch. 3 Kalman Filter-Based Estimation -- 3.1.Introduction -- 3.1.1.Elements of the Kalman Filter -- 3.1.2.Steps of the Kalman Filter -- 3.1.3.Kalman Filter Applications -- 3.2.Algorithms and Models -- 3.2.1.Definitions -- 3.2.2.Kalman Filter Algorithm -- 3.2.3.System Model -- 3.2.4.Measurement Model -- 3.2.5.Kalman Filter Behavior and State Observability -- 3.2.6.Closed-Loop Kalman Filter -- 3.2.7.Sequential Measurement Update -- 3.3.Implementation Issues -- 3.3.1.Tuning and Stability -- 3.3.2.Algorithm Design -- 3.3.3.Numerical Issues -- 3.3.4.Time Synchronization -- 3.3.5.Kalman Filter Design Process -- 3.4.Extensions to the Kalman Filter -- 3.4.1.Extended and Linearized Kalman Filter -- 3.4.2.Unscented Kalman Filter -- 3.4.3.Time-Correlated Noise -- 3.4.4.Adaptive Kalman Filter -- 3.4.5.Multiple-Hypothesis Filtering -- 3.4.6.Kalman Smoothing -- 3.5.The Particle Filter -- References -- ch. 4 Inertial Sensors -- 4.1.Accelerometers -- 4.1.1.Pendulous Accelerometers -- 4.1.2.Vibrating-Beam Accelerometers -- 4.2.Gyroscopes -- 4.2.1.Optical Gyroscopes -- 4.2.2.Vibratory Gyroscopes -- 4.3.Inertial Measurement Units -- 4.4.Error Characteristics -- 4.4.1.Biases -- 4.4.2.Scale Factor and Cross-Coupling Errors -- 4.4.3.Random Noise -- 4.4.4.Further Error Sources -- 4.4.5.Vibration-Induced Errors -- 4.4.6.Error Models -- References -- ch. 5 Inertial Navigation -- 5.1.Introduction to Inertial Navigation -- 5.2.Inertial-Frame Navigation Equations -- 5.2.1.Attitude Update -- 5.2.2.Specific-Force Frame Transformation -- 5.2.3.Velocity Update -- 5.2.4.Position Update -- 5.3.Earth-Frame Navigation Equations -- 5.3.1.Attitude Update -- 5.3.2.Specific-Force Frame Transformation -- 5.3.3.Velocity Update -- 5.3.4.Position Update -- 5.4.Local-Navigation-Frame Navigation Equations -- 5.4.1.Attitude Update -- 5.4.2.Specific-Force Frame Transformation -- 5.4.3.Velocity Update -- 5.4.4.Position Update -- 5.4.5.Wander-Azimuth Implementation -- 5.5.Navigation Equations Optimization -- 5.5.1.Precision Attitude Update -- 5.5.2.Precision Specific-Force Frame Transformation -- 5.5.3.Precision Velocity and Position Updates -- 5.5.4.Effects of Sensor Sampling Interval and Vibration -- 5.5.5.Design Tradeoffs -- 5.6.Initialization and Alignment -- 5.6.1.Position and Velocity Initialization -- 5.6.2.Attitude Initialization -- 5.6.3.Fine Alignment -- 5.7.INS Error Propagation -- 5.7.1.Short-Term Straight-Line Error Propagation -- 5.7.2.Medium- and Long-Term Error Propagation -- 5.7.3.Maneuver-Dependent Errors -- 5.8.Indexed IMU -- 5.9.Partial IMU -- References -- ch. 6 Dead Reckoning, Attitude, and Height Measurement -- 6.1.Attitude Measurement -- 6.1.1.Magnetic Heading -- 6.1.2.Marine Gyrocompass -- 6.1.3.Strapdown Yaw-Axis Gyro -- 6.1.4.Heading from Trajectory -- 6.1.5.Integrated Heading Determination -- 6.1.6.Accelerometer Leveling and Tilt Sensors -- 6.1.7.Horizon Sensing -- 6.1.8.Attitude and Heading Reference System -- 6.2.Height and Depth Measurement -- 6.2.1.Barometric Altimeter -- 6.2.2.Depth Pressure Sensor -- 6.2.3.Radar Altimeter -- 6.3.Odometry -- 6.3.1.Linear Odometry -- 6.3.2.Differential Odometry -- 6.3.3.Integrated Odometry and Partial IMU -- 6.4.Pedestrian Dead Reckoning Using Step Detection -- 6.5.Doppler Radar and Sonar -- 6.6.Other Dead-Reckoning Techniques -- 6.6.1.Correlation-Based Velocity Measurement -- 6.6.2.Air Data -- 6.6.3.Ship's Speed Log -- References -- ch. 7 Principles of Radio Positioning -- 7.1.Radio Positioning Configurations and Methods -- 7.1.1.Self-Positioning and Remote Positioning -- 7.1.2.Relative Positioning -- 7.1.3.Proximity -- 7.1.4.Ranging -- 7.1.5.Angular Positioning -- 7.1.6.Pattern Matching -- 7.1.7.Doppler Positioning -- 7.2.Positioning Signals -- 7.2.1.Modulation Types -- 7.2.2.Radio Spectrum -- 7.3.User Equipment -- 7.3.1.Architecture -- 7.3.2.Signal Timing Measurement -- 7.3.3.Position Determination from Ranging -- 7.4.Propagation, Error Sources, and Positioning Accuracy -- 7.4.1.Ionosphere, Troposphere, and Surface Propagation Effects -- 7.4.2.Attenuation, Reflection, Multipath, and Diffraction -- 7.4.3.Resolution, Noise, and Tracking Errors -- 7.4.4.Transmitter Location and Timing Errors -- 7.4.5.Effect of Signal Geometry -- References -- ch. 8 GNSS: Fundamentals, Signals, and Satellites -- 8.1.Fundamentals of Satellite Navigation -- 8.1.1.GNSS Architecture -- 8.1.2.Signals and Range Measurement -- 8.1.3.Positioning -- 8.1.4.Error Sources and Performance Limitations -- 8.2.The Systems -- 8.2.1.Global Positioning System -- 8.2.2.GLONASS -- 8.2.3.Galileo -- 8.2.4.Beidou -- 8.2.5.Regional Systems -- 8.2.6.Augmentation Systems -- 8.2.7.System Compatibility -- 8.3.GNSS Signals -- 8.3.1.Signal Types -- 8.3.2.Global Positioning System -- 8.3.3.GLONASS -- 8.3.4.Galileo -- 8.3.5.Beidou -- 8.3.6.Regional Systems -- 8.3.7.Augmentation Systems -- 8.4.Navigation Data Messages -- 8.4.1.GPS -- 8.4.2.GLONASS -- 8.4.3.Galileo -- 8.4.4.SBAS -- 8.4.5.Time Base Synchronization -- 8.5.Satellite Orbits and Geometry -- 8.5.1.Satellite Orbits -- 8.5.2.Satellite Position and Velocity -- 8.5.3.Range, Range Rate, and Line of Sight -- 8.5.4.Elevation and Azimuth -- References -- ch. 9 GNSS: User Equipment Processing and Errors -- 9.1.Receiver Hardware and Antenna -- 9.1.1.Antennas -- 9.1.2.Reference Oscillator -- 9.1.3.Receiver Front End -- 9.1.4.Baseband Signal Processor -- 9.2.Ranging Processor -- 9.2.1.Acquisition -- 9.2.2.Code Tracking -- 9.2.3.Carrier Tracking -- 9.2.4.Tracking Lock Detection -- 9.2.5.Navigation-Message Demodulation -- 9.2.6.Carrier-Power-to-Noise-Density Measurement -- 9.2.7.Pseudo-Range, Pseudo-Range-Rate, and Carrier-Phase Measurements -- 9.3.Range Error Sources -- 9.3.1.Ephemeris Prediction and Satellite Clock Errors -- 9.3.2.Ionosphere and Troposphere Propagation Errors -- 9.3.3.Tracking Errors -- 9.3.4.Multipath, Nonline-of-Sight, and Diffraction -- 9.4.Navigation Processor -- 9.4.1.Single-Epoch Navigation Solution -- 9.4.2.Filtered Navigation Solution -- 9.4.3.Signal Geometry and Navigation Solution Accuracy -- 9.4.4.Position Error Budget -- References -- ch.…”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  19. 319

    Principles of GNSS, inertial, and multisensor integrated navigation systems / by Groves, Paul D. (Paul David)

    Published 2013
    Table of Contents: “…Machine generated contents note: ch. 1 Introduction -- 1.1.Fundamental Concepts -- 1.2.Dead Reckoning -- 1.3.Position Fixing -- 1.3.1.Position-Fixing Methods -- 1.3.2.Signal-Based Positioning -- 1.3.3.Environmental Feature Matching -- 1.4.The Navigation System -- 1.4.1.Requirements -- 1.4.2.Context -- 1.4.3.Integration -- 1.4.4.Aiding -- 1.4.5.Assistance and Cooperation -- 1.4.6.Fault Detection -- 1.5.Overview of the Book -- References -- ch. 2 Coordinate Frames, Kinematics, and the Earth -- 2.1.Coordinate Frames -- 2.1.1.Earth-Centered Inertial Frame -- 2.1.2.Earth-Centered Earth-Fixed Frame -- 2.1.3.Local Navigation Frame -- 2.1.4.Local Tangent-Plane Frame -- 2.1.5.Body Frame -- 2.1.6.Other Frames -- 2.2.Attitude, Rotation, and Resolving Axes Transformations -- 2.2.1.Euler Attitude -- 2.2.2.Coordinate Transformation Matrix -- 2.2.3.Quaternion Attitude -- 2.2.4.Rotation Vector -- 2.3.Kinematics -- 2.3.1.Angular Rate -- 2.3.2.Cartesian Position -- 2.3.3.Velocity -- 2.3.4.Acceleration -- 2.3.5.Motion with Respect to a Rotating Reference Frame -- 2.4.Earth Surface and Gravity Models -- 2.4.1.The Ellipsoid Model of the Earth's Surface -- 2.4.2.Curvilinear Position -- 2.4.3.Position Conversion -- 2.4.4.The Geoid, Orthometric Height, and Earth Tides -- 2.4.5.Projected Coordinates -- 2.4.6.Earth Rotation -- 2.4.7.Specific Force, Gravitation, and Gravity -- 2.5.Frame Transformations -- 2.5.1.Inertial and Earth Frames -- 2.5.2.Earth and Local Navigation Frames -- 2.5.3.Inertial and Local Navigation Frames -- 2.5.4.Earth and Local Tangent-Plane Frames -- 2.5.5.Transposition of Navigation Solutions -- References -- ch. 3 Kalman Filter-Based Estimation -- 3.1.Introduction -- 3.1.1.Elements of the Kalman Filter -- 3.1.2.Steps of the Kalman Filter -- 3.1.3.Kalman Filter Applications -- 3.2.Algorithms and Models -- 3.2.1.Definitions -- 3.2.2.Kalman Filter Algorithm -- 3.2.3.System Model -- 3.2.4.Measurement Model -- 3.2.5.Kalman Filter Behavior and State Observability -- 3.2.6.Closed-Loop Kalman Filter -- 3.2.7.Sequential Measurement Update -- 3.3.Implementation Issues -- 3.3.1.Tuning and Stability -- 3.3.2.Algorithm Design -- 3.3.3.Numerical Issues -- 3.3.4.Time Synchronization -- 3.3.5.Kalman Filter Design Process -- 3.4.Extensions to the Kalman Filter -- 3.4.1.Extended and Linearized Kalman Filter -- 3.4.2.Unscented Kalman Filter -- 3.4.3.Time-Correlated Noise -- 3.4.4.Adaptive Kalman Filter -- 3.4.5.Multiple-Hypothesis Filtering -- 3.4.6.Kalman Smoothing -- 3.5.The Particle Filter -- References -- ch. 4 Inertial Sensors -- 4.1.Accelerometers -- 4.1.1.Pendulous Accelerometers -- 4.1.2.Vibrating-Beam Accelerometers -- 4.2.Gyroscopes -- 4.2.1.Optical Gyroscopes -- 4.2.2.Vibratory Gyroscopes -- 4.3.Inertial Measurement Units -- 4.4.Error Characteristics -- 4.4.1.Biases -- 4.4.2.Scale Factor and Cross-Coupling Errors -- 4.4.3.Random Noise -- 4.4.4.Further Error Sources -- 4.4.5.Vibration-Induced Errors -- 4.4.6.Error Models -- References -- ch. 5 Inertial Navigation -- 5.1.Introduction to Inertial Navigation -- 5.2.Inertial-Frame Navigation Equations -- 5.2.1.Attitude Update -- 5.2.2.Specific-Force Frame Transformation -- 5.2.3.Velocity Update -- 5.2.4.Position Update -- 5.3.Earth-Frame Navigation Equations -- 5.3.1.Attitude Update -- 5.3.2.Specific-Force Frame Transformation -- 5.3.3.Velocity Update -- 5.3.4.Position Update -- 5.4.Local-Navigation-Frame Navigation Equations -- 5.4.1.Attitude Update -- 5.4.2.Specific-Force Frame Transformation -- 5.4.3.Velocity Update -- 5.4.4.Position Update -- 5.4.5.Wander-Azimuth Implementation -- 5.5.Navigation Equations Optimization -- 5.5.1.Precision Attitude Update -- 5.5.2.Precision Specific-Force Frame Transformation -- 5.5.3.Precision Velocity and Position Updates -- 5.5.4.Effects of Sensor Sampling Interval and Vibration -- 5.5.5.Design Tradeoffs -- 5.6.Initialization and Alignment -- 5.6.1.Position and Velocity Initialization -- 5.6.2.Attitude Initialization -- 5.6.3.Fine Alignment -- 5.7.INS Error Propagation -- 5.7.1.Short-Term Straight-Line Error Propagation -- 5.7.2.Medium- and Long-Term Error Propagation -- 5.7.3.Maneuver-Dependent Errors -- 5.8.Indexed IMU -- 5.9.Partial IMU -- References -- ch. 6 Dead Reckoning, Attitude, and Height Measurement -- 6.1.Attitude Measurement -- 6.1.1.Magnetic Heading -- 6.1.2.Marine Gyrocompass -- 6.1.3.Strapdown Yaw-Axis Gyro -- 6.1.4.Heading from Trajectory -- 6.1.5.Integrated Heading Determination -- 6.1.6.Accelerometer Leveling and Tilt Sensors -- 6.1.7.Horizon Sensing -- 6.1.8.Attitude and Heading Reference System -- 6.2.Height and Depth Measurement -- 6.2.1.Barometric Altimeter -- 6.2.2.Depth Pressure Sensor -- 6.2.3.Radar Altimeter -- 6.3.Odometry -- 6.3.1.Linear Odometry -- 6.3.2.Differential Odometry -- 6.3.3.Integrated Odometry and Partial IMU -- 6.4.Pedestrian Dead Reckoning Using Step Detection -- 6.5.Doppler Radar and Sonar -- 6.6.Other Dead-Reckoning Techniques -- 6.6.1.Correlation-Based Velocity Measurement -- 6.6.2.Air Data -- 6.6.3.Ship's Speed Log -- References -- ch. 7 Principles of Radio Positioning -- 7.1.Radio Positioning Configurations and Methods -- 7.1.1.Self-Positioning and Remote Positioning -- 7.1.2.Relative Positioning -- 7.1.3.Proximity -- 7.1.4.Ranging -- 7.1.5.Angular Positioning -- 7.1.6.Pattern Matching -- 7.1.7.Doppler Positioning -- 7.2.Positioning Signals -- 7.2.1.Modulation Types -- 7.2.2.Radio Spectrum -- 7.3.User Equipment -- 7.3.1.Architecture -- 7.3.2.Signal Timing Measurement -- 7.3.3.Position Determination from Ranging -- 7.4.Propagation, Error Sources, and Positioning Accuracy -- 7.4.1.Ionosphere, Troposphere, and Surface Propagation Effects -- 7.4.2.Attenuation, Reflection, Multipath, and Diffraction -- 7.4.3.Resolution, Noise, and Tracking Errors -- 7.4.4.Transmitter Location and Timing Errors -- 7.4.5.Effect of Signal Geometry -- References -- ch. 8 GNSS: Fundamentals, Signals, and Satellites -- 8.1.Fundamentals of Satellite Navigation -- 8.1.1.GNSS Architecture -- 8.1.2.Signals and Range Measurement -- 8.1.3.Positioning -- 8.1.4.Error Sources and Performance Limitations -- 8.2.The Systems -- 8.2.1.Global Positioning System -- 8.2.2.GLONASS -- 8.2.3.Galileo -- 8.2.4.Beidou -- 8.2.5.Regional Systems -- 8.2.6.Augmentation Systems -- 8.2.7.System Compatibility -- 8.3.GNSS Signals -- 8.3.1.Signal Types -- 8.3.2.Global Positioning System -- 8.3.3.GLONASS -- 8.3.4.Galileo -- 8.3.5.Beidou -- 8.3.6.Regional Systems -- 8.3.7.Augmentation Systems -- 8.4.Navigation Data Messages -- 8.4.1.GPS -- 8.4.2.GLONASS -- 8.4.3.Galileo -- 8.4.4.SBAS -- 8.4.5.Time Base Synchronization -- 8.5.Satellite Orbits and Geometry -- 8.5.1.Satellite Orbits -- 8.5.2.Satellite Position and Velocity -- 8.5.3.Range, Range Rate, and Line of Sight -- 8.5.4.Elevation and Azimuth -- References -- ch. 9 GNSS: User Equipment Processing and Errors -- 9.1.Receiver Hardware and Antenna -- 9.1.1.Antennas -- 9.1.2.Reference Oscillator -- 9.1.3.Receiver Front End -- 9.1.4.Baseband Signal Processor -- 9.2.Ranging Processor -- 9.2.1.Acquisition -- 9.2.2.Code Tracking -- 9.2.3.Carrier Tracking -- 9.2.4.Tracking Lock Detection -- 9.2.5.Navigation-Message Demodulation -- 9.2.6.Carrier-Power-to-Noise-Density Measurement -- 9.2.7.Pseudo-Range, Pseudo-Range-Rate, and Carrier-Phase Measurements -- 9.3.Range Error Sources -- 9.3.1.Ephemeris Prediction and Satellite Clock Errors -- 9.3.2.Ionosphere and Troposphere Propagation Errors -- 9.3.3.Tracking Errors -- 9.3.4.Multipath, Nonline-of-Sight, and Diffraction -- 9.4.Navigation Processor -- 9.4.1.Single-Epoch Navigation Solution -- 9.4.2.Filtered Navigation Solution -- 9.4.3.Signal Geometry and Navigation Solution Accuracy -- 9.4.4.Position Error Budget -- References -- ch.…”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  20. 320

    Urban Rail Transit

    Open Access
    Electronic Journal