Search Results - "magnetic field"
Suggested Topics within your search.
Suggested Topics within your search.
- Magnetic fields 28
- Physics 8
- Electromagnetism 6
- Experiments 6
- Magnetics 6
- Magnetism 6
- Mathematics 6
- Cosmic magnetic fields 4
- Electrical engineering 4
- Electromagnetic fields 4
- Magnetic properties 4
- Planets 4
- Semiconductors 4
- Stars 4
- Aerospace engineering 2
- Aggregation (Chemistry) 2
- Algebraic topology 2
- Artificial satellites in navigation 2
- Astrophysics 2
- Atmospheres 2
- Automation 2
- Braid theory 2
- Carcinogenicity 2
- Ceramic materials 2
- Children 2
- Composite materials 2
- Computer simulation 2
- Convection (Astrophysics) 2
- Corona 2
- Crystallization 2
-
61
Soft magnetic materials : selected, peer reviewed paper [i.e. papers] from 2011 International Conference on Soft Magnetic Materials (ICSMM 2011) on May 23-24, in Male, Maldives /
Published 2011Table of Contents: “…Sun -- Three-Dimensional Automatic Measurements System for RFID Magnetic Field / P.J. Wu -- Modeling and Simulation of the Membrane-Type Actuator Based on E-ACE / L.H. …”
An electronic book accessible through the World Wide Web; click to view
Electronic Conference Proceeding eBook -
62
Child health and the environment
Published 2003Table of Contents: “…Power Frequency Electric and Magnetic Fields -- and Radiofrequency Radiation, 243 -- Health Effects, 244 -- Exposures, 252 -- Risk Management, 253 -- III. …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
63
Flexible test automation : a software framework for easily developing measurement applications /
Published 2015Table of Contents: “…The flexible framework for magnetic measurements at CERN -- 6.1 Overview -- 6.2 Methods for magnetic field measurements -- 6.3 Automatic systems for magnetic measurements -- 6.4 Software for magnetic measurements at CERN -- 6.5 Flexibility requirements for magnetic measurement automation -- 6.6 The framework FFMM -- References --…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
64
Child health and the environment
Published 2003Table of Contents: “…Power Frequency Electric and Magnetic Fields -- and Radiofrequency Radiation, 243 -- Health Effects, 244 -- Exposures, 252 -- Risk Management, 253 -- III. …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
65
Flexible test automation : a software framework for easily developing measurement applications /
Published 2015Table of Contents: “…The flexible framework for magnetic measurements at CERN -- 6.1 Overview -- 6.2 Methods for magnetic field measurements -- 6.3 Automatic systems for magnetic measurements -- 6.4 Software for magnetic measurements at CERN -- 6.5 Flexibility requirements for magnetic measurement automation -- 6.6 The framework FFMM -- References --…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
66
Design and fabrication of self-powered micro-harvesters : rotating and vibrated micro-power systems /
Published 2014Table of Contents: “…Machine generated contents note: About the Authors xi Preface xiii Acknowledgments xv 1 Introduction 1 1.1 Background 1 1.2 Energy Harvesters 2 1.2.1 Piezoelectric ZnO Energy Harvester 3 1.2.2 Vibrational Electromagnetic Generators 3 1.2.3 Rotary Electromagnetic Generators 4 1.2.4 NFES Piezoelectric PVDF Energy Harvester 4 1.3 Overview 5 2 Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films 7 2.1 Introduction 7 2.2 Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters 10 2.2.1 Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester 10 2.2.2 Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film 12 2.2.3 Optimal Thickness of PET Substrate 15 2.2.4 Model Solution of Cantilever Plate Equation 15 2.2.5 Vibration-Induced Electric Potential and Electric Power 18 2.2.6 Static Analysis to Calculate the Optimal Thickness of the PET Substrate 19 2.2.7 Model Analysis and Harmonic Analysis 21 2.2.8 Results of Model Analysis and Harmonic Analysis 23 2.3 The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates 27 2.3.1 Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates 27 2.3.2 Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates 29 2.3.3 Sputtering of Al and ITO Conductive Thin Films on PET Substrates 29 2.3.4 Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering 31 2.3.5 Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions 34 2.3.6 Application of ZnO/PET-Based Generator to Flash Signal LED Module 39 2.3.7 Design and Performance of a Broad Bandwidth Energy Harvesting System 40 2.4 Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators 48 2.4.1 Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates 48 2.4.2 Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 50 2.4.3 Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 51 2.4.4 Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators 52 2.4.5 Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates 54 2.4.6 Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates 56 2.4.7 Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 59 2.4.8 Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 61 2.4.9 Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator 63 2.5 Summary 66 References 67 3 Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators 71 3.1 Introduction 71 3.2 Comparisons between MCTG and SMTG 74 3.2.1 Magnetic Core-Type Generator (MCTG) 74 3.2.2 Sided Magnet-Type Generator (SMTG) 76 3.3 Analysis of Electromagnetic Vibration-Induced Microgenerators 76 3.3.1 Design of Electromagnetic Vibration-Induced Microgenerators 77 3.3.2 Analysis Mode of the Microvibration Structure 78 3.3.3 Analysis Mode of Magnetic Field 81 3.3.4 Evaluation of Various Parameters of Power Output 84 3.4 Analytical Results and Discussion 88 3.4.1 Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring 90 3.4.2 Finite Element Models for Magnetic Density Distribution 93 3.4.3 Power Output Evaluation 97 3.5 Fabrication of Microcoil for Microgenerator 103 3.5.1 Microspring and Induction Coil 103 3.5.2 Microspring and Magnet 105 3.6 Tests and Experiments 106 3.6.1 Measurement System 106 3.6.2 Measurement Results and Discussion 107 3.6.3 Comparison between Measured Results and Analytical Values 110 3.7 Conclusions 112 3.7.1 Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field 112 3.7.2 Fabrication of LTCC Microsensor 112 3.7.3 Measurement and Analysis Results 113 3.8 Summary 113 References 114 4 Design and Fabrication of Rotary Electromagnetic Microgenerator 117 4.1 Introduction 117 4.1.1 Piezoelectric, Thermoelectric, and Electrostatic Generators 119 4.1.2 Vibrational Electromagnetic Generators 119 4.1.3 Rotary Electromagnetic Generators 120 4.1.4 Generator Processes 121 4.1.5 Lithographie Galvanoformung Abformung Process 122 4.1.6 Winding Processes 123 4.1.7 LTCC 123 4.1.8 Printed Circuit Board Processes 124 4.1.9 Finite-Element Simulation and Analytical Solutions 126 4.2 Case 1: Winding Generator 126 4.2.1 Design 127 4.2.2 Analytical Formulation 132 4.2.3 Simulation 134 4.2.4 Fabrication Process 138 4.2.5 Results and Discussion (1) 139 4.2.6 Results and Discussion (2) 142 4.3 Case 2: LTCC Generator 146 4.3.1 Simulation 147 4.3.2 Analytical Theorem of Microgenerator Electromagnetism 148 4.3.3 Simplification 152 4.3.4 Analysis of Vector Magnetic Potential 153 4.3.5 Analytical Solutions for Power Generation 154 4.4 Fabrication 157 4.4.1 LTCC Process 157 4.4.2 Magnet Process 159 4.4.3 Measurement Set-up 160 4.5 Results and Discussion 162 4.5.1 Design 162 4.5.2 Analytical Solutions 168 4.5.3 Fabrication 170 References 178 5 Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters 183 5.1 Introduction 183 5.2 Fundamentals of Electrospinning Technology 187 5.2.1 Introduction to Electrospinning 187 5.2.2 Alignment and Assembly of Nanofibers 190 5.3 Near-Field Electrospinning 191 5.3.1 Introduction and Background 191 5.3.2 Principles of Operation 194 5.3.3 Process and Experiment 196 5.3.4 Summary 202 5.4 Continuous NFES 202 5.4.1 Introduction and Background 202 5.4.2 Principles of Operation 202 5.4.3 Controllability and Continuity 205 5.4.4 Process Characterization 208 5.4.5 Summary 211 5.5 Direct-Write Piezoelectric Nanogenerator 211 5.5.1 Introduction and Background 211 5.5.2 Polyvinylidene Fluoride 212 5.5.3 Theoretical Studies for Realization of Electrospun PVDF Nanofibers 213 5.5.4 Electrospinning of PVDF Nanofibers 216 5.5.5 Detailed Discussion of Process Parameters 219 5.5.6 Experimental Realization of PVDF Nanogenerator 223 5.5.7 Summary 241 5.6 Materials, Structure, and Operation of Nanogenerator with Future Prospects 241 5.6.1 Material and Structural Characteristics 241 5.6.2 Operation of Nanogenerator 243 5.6.3 Summary and Future Prospects 248 5.7 Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate 248 5.7.1 Introduction and Background 248 5.7.2 Working Principle 249 5.7.3 Device Fabrication 249 5.7.4 Experimental Results 251 5.7.5 Summary 252 5.8 Conclusion 253 5.8.1 Near-Field Electrospinning 253 5.8.2 Continuous Near-Field Electrospinning 254 5.8.3 Direct-Write Piezoelectric PVDF 254 5.9 Future Directions 255 5.9.1 NFES Integrated Nanofiber Sensors 255 5.9.2 NFES One-Dimensional Sub-Wavelength Waveguide 256 5.9.3 NFES Biological Applications 257 5.9.4 Direct-Write Piezoelectric PVDF Nanogenerators 258 References 258 Index 265.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
67
Design and fabrication of self-powered micro-harvesters : rotating and vibrated micro-power systems /
Published 2014Table of Contents: “…Machine generated contents note: About the Authors xi Preface xiii Acknowledgments xv 1 Introduction 1 1.1 Background 1 1.2 Energy Harvesters 2 1.2.1 Piezoelectric ZnO Energy Harvester 3 1.2.2 Vibrational Electromagnetic Generators 3 1.2.3 Rotary Electromagnetic Generators 4 1.2.4 NFES Piezoelectric PVDF Energy Harvester 4 1.3 Overview 5 2 Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films 7 2.1 Introduction 7 2.2 Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters 10 2.2.1 Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester 10 2.2.2 Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film 12 2.2.3 Optimal Thickness of PET Substrate 15 2.2.4 Model Solution of Cantilever Plate Equation 15 2.2.5 Vibration-Induced Electric Potential and Electric Power 18 2.2.6 Static Analysis to Calculate the Optimal Thickness of the PET Substrate 19 2.2.7 Model Analysis and Harmonic Analysis 21 2.2.8 Results of Model Analysis and Harmonic Analysis 23 2.3 The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates 27 2.3.1 Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates 27 2.3.2 Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates 29 2.3.3 Sputtering of Al and ITO Conductive Thin Films on PET Substrates 29 2.3.4 Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering 31 2.3.5 Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions 34 2.3.6 Application of ZnO/PET-Based Generator to Flash Signal LED Module 39 2.3.7 Design and Performance of a Broad Bandwidth Energy Harvesting System 40 2.4 Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators 48 2.4.1 Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates 48 2.4.2 Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 50 2.4.3 Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 51 2.4.4 Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators 52 2.4.5 Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates 54 2.4.6 Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates 56 2.4.7 Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator 59 2.4.8 Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 61 2.4.9 Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator 63 2.5 Summary 66 References 67 3 Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators 71 3.1 Introduction 71 3.2 Comparisons between MCTG and SMTG 74 3.2.1 Magnetic Core-Type Generator (MCTG) 74 3.2.2 Sided Magnet-Type Generator (SMTG) 76 3.3 Analysis of Electromagnetic Vibration-Induced Microgenerators 76 3.3.1 Design of Electromagnetic Vibration-Induced Microgenerators 77 3.3.2 Analysis Mode of the Microvibration Structure 78 3.3.3 Analysis Mode of Magnetic Field 81 3.3.4 Evaluation of Various Parameters of Power Output 84 3.4 Analytical Results and Discussion 88 3.4.1 Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring 90 3.4.2 Finite Element Models for Magnetic Density Distribution 93 3.4.3 Power Output Evaluation 97 3.5 Fabrication of Microcoil for Microgenerator 103 3.5.1 Microspring and Induction Coil 103 3.5.2 Microspring and Magnet 105 3.6 Tests and Experiments 106 3.6.1 Measurement System 106 3.6.2 Measurement Results and Discussion 107 3.6.3 Comparison between Measured Results and Analytical Values 110 3.7 Conclusions 112 3.7.1 Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field 112 3.7.2 Fabrication of LTCC Microsensor 112 3.7.3 Measurement and Analysis Results 113 3.8 Summary 113 References 114 4 Design and Fabrication of Rotary Electromagnetic Microgenerator 117 4.1 Introduction 117 4.1.1 Piezoelectric, Thermoelectric, and Electrostatic Generators 119 4.1.2 Vibrational Electromagnetic Generators 119 4.1.3 Rotary Electromagnetic Generators 120 4.1.4 Generator Processes 121 4.1.5 Lithographie Galvanoformung Abformung Process 122 4.1.6 Winding Processes 123 4.1.7 LTCC 123 4.1.8 Printed Circuit Board Processes 124 4.1.9 Finite-Element Simulation and Analytical Solutions 126 4.2 Case 1: Winding Generator 126 4.2.1 Design 127 4.2.2 Analytical Formulation 132 4.2.3 Simulation 134 4.2.4 Fabrication Process 138 4.2.5 Results and Discussion (1) 139 4.2.6 Results and Discussion (2) 142 4.3 Case 2: LTCC Generator 146 4.3.1 Simulation 147 4.3.2 Analytical Theorem of Microgenerator Electromagnetism 148 4.3.3 Simplification 152 4.3.4 Analysis of Vector Magnetic Potential 153 4.3.5 Analytical Solutions for Power Generation 154 4.4 Fabrication 157 4.4.1 LTCC Process 157 4.4.2 Magnet Process 159 4.4.3 Measurement Set-up 160 4.5 Results and Discussion 162 4.5.1 Design 162 4.5.2 Analytical Solutions 168 4.5.3 Fabrication 170 References 178 5 Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters 183 5.1 Introduction 183 5.2 Fundamentals of Electrospinning Technology 187 5.2.1 Introduction to Electrospinning 187 5.2.2 Alignment and Assembly of Nanofibers 190 5.3 Near-Field Electrospinning 191 5.3.1 Introduction and Background 191 5.3.2 Principles of Operation 194 5.3.3 Process and Experiment 196 5.3.4 Summary 202 5.4 Continuous NFES 202 5.4.1 Introduction and Background 202 5.4.2 Principles of Operation 202 5.4.3 Controllability and Continuity 205 5.4.4 Process Characterization 208 5.4.5 Summary 211 5.5 Direct-Write Piezoelectric Nanogenerator 211 5.5.1 Introduction and Background 211 5.5.2 Polyvinylidene Fluoride 212 5.5.3 Theoretical Studies for Realization of Electrospun PVDF Nanofibers 213 5.5.4 Electrospinning of PVDF Nanofibers 216 5.5.5 Detailed Discussion of Process Parameters 219 5.5.6 Experimental Realization of PVDF Nanogenerator 223 5.5.7 Summary 241 5.6 Materials, Structure, and Operation of Nanogenerator with Future Prospects 241 5.6.1 Material and Structural Characteristics 241 5.6.2 Operation of Nanogenerator 243 5.6.3 Summary and Future Prospects 248 5.7 Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate 248 5.7.1 Introduction and Background 248 5.7.2 Working Principle 249 5.7.3 Device Fabrication 249 5.7.4 Experimental Results 251 5.7.5 Summary 252 5.8 Conclusion 253 5.8.1 Near-Field Electrospinning 253 5.8.2 Continuous Near-Field Electrospinning 254 5.8.3 Direct-Write Piezoelectric PVDF 254 5.9 Future Directions 255 5.9.1 NFES Integrated Nanofiber Sensors 255 5.9.2 NFES One-Dimensional Sub-Wavelength Waveguide 256 5.9.3 NFES Biological Applications 257 5.9.4 Direct-Write Piezoelectric PVDF Nanogenerators 258 References 258 Index 265.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
68
Fundamental interactions proceedings of the Sixteenth Lake Louise Winter Institute, Lake Louise, Alberta, Canada, 18-24 February, 2001 /
Published 2002Table of Contents: “…Lange -- Electromagnetic Interactions in Strong Magnetic Fields -- D. Leahy -- CLEO Measurements of the CKM Elements IVub and Vb -- T. …”
An electronic book accessible through the World Wide Web; click to view
Electronic Conference Proceeding eBook -
69
Fundamental interactions proceedings of the Sixteenth Lake Louise Winter Institute, Lake Louise, Alberta, Canada, 18-24 February, 2001 /
Published 2002Table of Contents: “…Lange -- Electromagnetic Interactions in Strong Magnetic Fields -- D. Leahy -- CLEO Measurements of the CKM Elements IVub and Vb -- T. …”
An electronic book accessible through the World Wide Web; click to view
Electronic Conference Proceeding eBook -
70
Aerospace sensors
Published 2013Table of Contents: “…Compasses -- 7.1 Introduction -- 7.2 Magnetic compasses -- 7.2.1 Brief historical sketch -- 7.2.2 The earth's magnetic field -- 7.2.3 Magnetic compass design principles and errors -- 7.2.4 Examples of magnetic compasses structures -- 7.3 Fluxgate and gyro-magnetic compasses -- 7.3.1 Fluxgate and gyro-magnetic compasses design principles -- 7.3.2 Examples of fluxgate and gyro-magnetic structures -- 7.4 Electronic compasses -- References --…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
71
Aerospace sensors
Published 2013Table of Contents: “…Compasses -- 7.1 Introduction -- 7.2 Magnetic compasses -- 7.2.1 Brief historical sketch -- 7.2.2 The earth's magnetic field -- 7.2.3 Magnetic compass design principles and errors -- 7.2.4 Examples of magnetic compasses structures -- 7.3 Fluxgate and gyro-magnetic compasses -- 7.3.1 Fluxgate and gyro-magnetic compasses design principles -- 7.3.2 Examples of fluxgate and gyro-magnetic structures -- 7.4 Electronic compasses -- References --…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
72
Principles of GNSS, inertial, and multisensor integrated navigation systems /
Published 2013Table of Contents: “…Note continued: 12.3.Short-Range Communications Systems -- 12.3.1.Wireless Local Area Networks (Wi-Fi) -- 12.3.2.Wireless Personal Area Networks -- 12.3.3.Radio Frequency Identification -- 12.3.4.Bluetooth Low Energy -- 12.3.5.Dedicated Short-Range Communication -- 12.4.Underwater Acoustic Positioning -- 12.5.Other Positioning Technologies -- 12.5.1.Radio -- 12.5.2.Ultrasound -- 12.5.3.Infrared -- 12.5.4.Optical -- 12.5.5.Magnetic -- References -- ch. 13 Environmental Feature Matching -- 13.1.Map Matching -- 13.1.1.Digital Road Maps -- 13.1.2.Road Link Identification -- 13.1.3.Road Positioning -- 13.1.4.Rail Map Matching -- 13.1.5.Pedestrian Map Matching -- 13.2.Terrain-Referenced Navigation -- 13.2.1.Sequential Processing -- 13.2.2.Batch Processing -- 13.2.3.Performance -- 13.2.4.Laser TRN -- 13.2.5.Sonar TRN -- 13.2.6.Barometric TRN -- 13.2.7.Terrain Database Height Aiding -- 13.3.Image-Based Navigation -- 13.3.1.Imaging Sensors -- 13.3.2.Image Feature Comparison -- 13.3.3.Position Fixing Using Individual Features -- 13.3.4.Position Fixing by Whole-Image Matching -- 13.3.5.Visual Odometry -- 13.3.6.Feature Tracking -- 13.3.7.Stellar Navigation -- 13.4.Other Feature-Matching Techniques -- 13.4.1.Gravity Gradiometry -- 13.4.2.Magnetic Field Variation -- 13.4.3.Celestial X-Ray Sources -- References -- ch. 14 INS/GNSS Integration -- 14.1.Integration Architectures -- 14.1.1.Correction of the Inertial Navigation Solution -- 14.1.2.Loosely Coupled Integration -- 14.1.3.Tightly Coupled Integration -- 14.1.4.GNSS Aiding -- 14.1.5.Deeply Coupled Integration -- 14.2.System Model and State Selection -- 14.2.1.State Selection and Observability -- 14.2.2.INS State Propagation in an Inertial Frame -- 14.2.3.INS State Propagation in an Earth Frame -- 14.2.4.INS State Propagation Resolved in a Local Navigation Frame -- 14.2.5.Additional IMU Error States -- 14.2.6.INS System Noise -- 14.2.7.GNSS State Propagation and System Noise -- 14.2.8.State Initialization -- 14.3.Measurement Models -- 14.3.1.Loosely Coupled Integration -- 14.3.2.Tightly Coupled Integration -- 14.3.3.Deeply Coupled Integration -- 14.3.4.Estimation of Attitude and Instrument Errors -- 14.4.Advanced INS/GNSS Integration -- 14.4.1.Differential GNSS -- 14.4.2.Carrier-Phase Positioning -- 14.4.3.GNSS Attitude -- 14.4.4.Large Heading Errors -- 14.4.5.Advanced IMU Error Modeling -- 14.4.6.Smoothing -- References -- ch. 15 INS Alignment, Zero Updates, and Motion Constraints -- 15.1.Transfer Alignment -- 15.1.1.Conventional Measurement Matching -- 15.1.2.Rapid Transfer Alignment -- 15.1.3.Reference Navigation System -- 15.2.Quasi-Stationary Alignment -- 15.2.1.Coarse Alignment -- 15.2.2.Fine Alignment -- 15.3.Zero Updates -- 15.3.1.Stationary-Condition Detection -- 15.3.2.Zero Velocity Update -- 15.3.3.Zero Angular Rate Update -- 15.4.Motion Constraints -- 15.4.1.Land Vehicle Constraints -- 15.4.2.Pedestrian Constraints -- 15.4.3.Ship and Boat Constraint -- References -- ch. 16 Multisensor Integrated Navigation -- 16.1.Integration Architectures -- 16.1.1.Cascaded Single-Epoch Integration -- 16.1.2.Centralized Single-Epoch Integration -- 16.1.3.Cascaded Filtered Integration -- 16.1.4.Centralized Filtered Integration -- 16.1.5.Federated Filtered Integration -- 16.1.6.Hybrid Integration Architectures -- 16.1.7.Total-State Kalman Filter Employing Prediction -- 16.1.8.Error-State Kalman Filter -- 16.1.9.Primary and Reversionary Moding -- 16.1.10.Context-Adaptive Moding -- 16.2.Dead Reckoning, Attitude, and Height Measurement -- 16.2.1.Attitude -- 16.2.2.Height and Depth -- 16.2.3.Odometry -- 16.2.4.Pedestrian Dead Reckoning Using Step Detection -- 16.2.5.Doppler Radar and Sonar -- 16.2.6.Visual Odometry and Terrain-Referenced Dead Reckoning -- 16.3.Position-Fixing Measurements -- 16.3.1.Position Measurement Integration -- 16.3.2.Ranging Measurement Integration -- 16.3.3.Angular Measurement Integration -- 16.3.4.Line Fix Integration -- 16.3.5.Handling Ambiguous Measurements -- 16.3.6.Feature Tracking and Mapping -- 16.3.7.Aiding of Position-Fixing Systems -- References -- ch. 17 Fault Detection, Integrity Monitoring, and Testing -- 17.1.Failure Modes -- 17.1.1.Inertial Navigation -- 17.1.2.Dead Reckoning, Attitude, and Height Measurement -- 17.1.3.GNSS -- 17.1.4.Terrestrial Radio Navigation -- 17.1.5.Environmental Feature Matching and Tracking -- 17.1.6.Integration Algorithm -- 17.1.7.Context -- 17.2.Range Checks -- 17.2.1.Sensor Outputs -- 17.2.2.Navigation Solution -- 17.2.3.Kalman Filter Estimates -- 17.3.Kalman Filter Measurement Innovations -- 17.3.1.Innovation Filtering -- 17.3.2.Innovation Sequence Monitoring -- 17.3.3.Remedying Biased State Estimates -- 17.4.Direct Consistency Checks -- 17.4.1.Measurement Consistency Checks and RAIM -- 17.4.2.Parallel Solutions -- 17.5.Infrastructure-Based Integrity Monitoring -- 17.6.Solution Protection and Performance Requirements -- 17.7.Testing -- 17.7.1.Field Trials -- 17.7.2.Recorded Data Testing -- 17.7.3.Laboratory Testing -- 17.7.4.Software Simulation -- References -- ch. 18 Applications and Future Trends -- 18.1.Design and Development -- 18.2.Aviation -- 18.3.Guided Weapons and Small UAVs -- 18.4.Land Vehicle Applications -- 18.5.Rail Navigation -- 18.6.Marine Navigation -- 18.7.Underwater Navigation -- 18.8.Spacecraft Navigation -- 18.9.Pedestrian Navigation -- 18.10.Other Applications -- 18.11.Future Trends -- References.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
73
Principles of GNSS, inertial, and multisensor integrated navigation systems /
Published 2013Table of Contents: “…Note continued: 12.3.Short-Range Communications Systems -- 12.3.1.Wireless Local Area Networks (Wi-Fi) -- 12.3.2.Wireless Personal Area Networks -- 12.3.3.Radio Frequency Identification -- 12.3.4.Bluetooth Low Energy -- 12.3.5.Dedicated Short-Range Communication -- 12.4.Underwater Acoustic Positioning -- 12.5.Other Positioning Technologies -- 12.5.1.Radio -- 12.5.2.Ultrasound -- 12.5.3.Infrared -- 12.5.4.Optical -- 12.5.5.Magnetic -- References -- ch. 13 Environmental Feature Matching -- 13.1.Map Matching -- 13.1.1.Digital Road Maps -- 13.1.2.Road Link Identification -- 13.1.3.Road Positioning -- 13.1.4.Rail Map Matching -- 13.1.5.Pedestrian Map Matching -- 13.2.Terrain-Referenced Navigation -- 13.2.1.Sequential Processing -- 13.2.2.Batch Processing -- 13.2.3.Performance -- 13.2.4.Laser TRN -- 13.2.5.Sonar TRN -- 13.2.6.Barometric TRN -- 13.2.7.Terrain Database Height Aiding -- 13.3.Image-Based Navigation -- 13.3.1.Imaging Sensors -- 13.3.2.Image Feature Comparison -- 13.3.3.Position Fixing Using Individual Features -- 13.3.4.Position Fixing by Whole-Image Matching -- 13.3.5.Visual Odometry -- 13.3.6.Feature Tracking -- 13.3.7.Stellar Navigation -- 13.4.Other Feature-Matching Techniques -- 13.4.1.Gravity Gradiometry -- 13.4.2.Magnetic Field Variation -- 13.4.3.Celestial X-Ray Sources -- References -- ch. 14 INS/GNSS Integration -- 14.1.Integration Architectures -- 14.1.1.Correction of the Inertial Navigation Solution -- 14.1.2.Loosely Coupled Integration -- 14.1.3.Tightly Coupled Integration -- 14.1.4.GNSS Aiding -- 14.1.5.Deeply Coupled Integration -- 14.2.System Model and State Selection -- 14.2.1.State Selection and Observability -- 14.2.2.INS State Propagation in an Inertial Frame -- 14.2.3.INS State Propagation in an Earth Frame -- 14.2.4.INS State Propagation Resolved in a Local Navigation Frame -- 14.2.5.Additional IMU Error States -- 14.2.6.INS System Noise -- 14.2.7.GNSS State Propagation and System Noise -- 14.2.8.State Initialization -- 14.3.Measurement Models -- 14.3.1.Loosely Coupled Integration -- 14.3.2.Tightly Coupled Integration -- 14.3.3.Deeply Coupled Integration -- 14.3.4.Estimation of Attitude and Instrument Errors -- 14.4.Advanced INS/GNSS Integration -- 14.4.1.Differential GNSS -- 14.4.2.Carrier-Phase Positioning -- 14.4.3.GNSS Attitude -- 14.4.4.Large Heading Errors -- 14.4.5.Advanced IMU Error Modeling -- 14.4.6.Smoothing -- References -- ch. 15 INS Alignment, Zero Updates, and Motion Constraints -- 15.1.Transfer Alignment -- 15.1.1.Conventional Measurement Matching -- 15.1.2.Rapid Transfer Alignment -- 15.1.3.Reference Navigation System -- 15.2.Quasi-Stationary Alignment -- 15.2.1.Coarse Alignment -- 15.2.2.Fine Alignment -- 15.3.Zero Updates -- 15.3.1.Stationary-Condition Detection -- 15.3.2.Zero Velocity Update -- 15.3.3.Zero Angular Rate Update -- 15.4.Motion Constraints -- 15.4.1.Land Vehicle Constraints -- 15.4.2.Pedestrian Constraints -- 15.4.3.Ship and Boat Constraint -- References -- ch. 16 Multisensor Integrated Navigation -- 16.1.Integration Architectures -- 16.1.1.Cascaded Single-Epoch Integration -- 16.1.2.Centralized Single-Epoch Integration -- 16.1.3.Cascaded Filtered Integration -- 16.1.4.Centralized Filtered Integration -- 16.1.5.Federated Filtered Integration -- 16.1.6.Hybrid Integration Architectures -- 16.1.7.Total-State Kalman Filter Employing Prediction -- 16.1.8.Error-State Kalman Filter -- 16.1.9.Primary and Reversionary Moding -- 16.1.10.Context-Adaptive Moding -- 16.2.Dead Reckoning, Attitude, and Height Measurement -- 16.2.1.Attitude -- 16.2.2.Height and Depth -- 16.2.3.Odometry -- 16.2.4.Pedestrian Dead Reckoning Using Step Detection -- 16.2.5.Doppler Radar and Sonar -- 16.2.6.Visual Odometry and Terrain-Referenced Dead Reckoning -- 16.3.Position-Fixing Measurements -- 16.3.1.Position Measurement Integration -- 16.3.2.Ranging Measurement Integration -- 16.3.3.Angular Measurement Integration -- 16.3.4.Line Fix Integration -- 16.3.5.Handling Ambiguous Measurements -- 16.3.6.Feature Tracking and Mapping -- 16.3.7.Aiding of Position-Fixing Systems -- References -- ch. 17 Fault Detection, Integrity Monitoring, and Testing -- 17.1.Failure Modes -- 17.1.1.Inertial Navigation -- 17.1.2.Dead Reckoning, Attitude, and Height Measurement -- 17.1.3.GNSS -- 17.1.4.Terrestrial Radio Navigation -- 17.1.5.Environmental Feature Matching and Tracking -- 17.1.6.Integration Algorithm -- 17.1.7.Context -- 17.2.Range Checks -- 17.2.1.Sensor Outputs -- 17.2.2.Navigation Solution -- 17.2.3.Kalman Filter Estimates -- 17.3.Kalman Filter Measurement Innovations -- 17.3.1.Innovation Filtering -- 17.3.2.Innovation Sequence Monitoring -- 17.3.3.Remedying Biased State Estimates -- 17.4.Direct Consistency Checks -- 17.4.1.Measurement Consistency Checks and RAIM -- 17.4.2.Parallel Solutions -- 17.5.Infrastructure-Based Integrity Monitoring -- 17.6.Solution Protection and Performance Requirements -- 17.7.Testing -- 17.7.1.Field Trials -- 17.7.2.Recorded Data Testing -- 17.7.3.Laboratory Testing -- 17.7.4.Software Simulation -- References -- ch. 18 Applications and Future Trends -- 18.1.Design and Development -- 18.2.Aviation -- 18.3.Guided Weapons and Small UAVs -- 18.4.Land Vehicle Applications -- 18.5.Rail Navigation -- 18.6.Marine Navigation -- 18.7.Underwater Navigation -- 18.8.Spacecraft Navigation -- 18.9.Pedestrian Navigation -- 18.10.Other Applications -- 18.11.Future Trends -- References.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
74
Physical and biological hazards of the workplace /
Published 2017An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
75
Physical and biological hazards of the workplace /
Published 2017An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
76
-
77