Search Results - "fiber"
Suggested Topics within your search.
Suggested Topics within your search.
- Fiber optics 36
- Materials 16
- Optical communications 16
- Food 14
- Optical fiber communication 14
- Optical fibers 14
- Polymers 14
- Textile fibers 12
- Composite materials 10
- Fiber-reinforced plastics 10
- Textile fibers, Synthetic 10
- Fiber in human nutrition 8
- History 8
- Industrial applications 8
- Polymeric composites 8
- Textile fabrics 8
- Design and construction 6
- Dyes and dyeing 6
- Electric properties 6
- Fiber content 6
- Fiber optic cables 6
- Fibrous composites 6
- Indian textile fabrics 6
- Inorganic fibers 6
- Nanostructured materials 6
- Photonics 6
- Agriculture 4
- Analysis 4
- Asbestos 4
- Biotechnology 4
-
221
Crystals and crystallinity in polymers : diffraction analysis of ordered and disordered crystals /
Published 2014Table of Contents: “…Machine generated contents note: Chapter 1 Configuration and Conformation of Macromolecules in Polymer Crystals 1.1 Crystals of polymers 1.2 Constitution and configuration of crystalline polymers 1.3 Conformation 1.4 Relationships among internal parameters of macromolecules 1.5 Conformation of polymer chains in the crystalline state 1.6 Helical conformations in isotactic and syndiotactic polymers 1.7 Conformational energy calculations 1.8 Helical conformation and optical activity 1.9 Alternating copolymers 1.10 Polydienes 1.11 Non helical chain conformations of isotactic polymers References Chapter 1 Chapter 2 Packing of macromolecules in polymer crystals 2.1 General principles 2.2 The principle of density (entropy)-driven phase formation in polymers 2.3 Symmetry breaking 2.4 Impact of chain folding on crystal structure symmetry 2.5 Frustrated Polymer Crystal Structures 2.6 Chiral crystallization of polymers with helical chain conformations 2.7 Packing effects on the conformation of polymer chains in the crystals: the case of aliphatic polyamides References Chapter 2 Chapter 3 3.1 X-ray diffraction of semicrystalline polymers 3.2 Fourier synthesis and the phase problem in crystallography 3.3 X-ray fiber diffraction analysis 3.4 Determination of parameters of the unit cell and indexing of the diffraction pattern 3.5 Measure of the integrated intensities of the reflections and corrections for geometrical (Lorentz), polarization and absorption factors 3.6 Calculation of Structure Factors 3.7 Structural refinement 3.8 Form of diffraction pattern and broadening due to the Laue function References Chapter 3 Chapter 4 Defects and Disorder in Polymer Crystals 4.1 Classification of different types of structural disorder 4.2 Crystals with partial three-dimensional order (Class A)Disorder with three-dimensional periodicity maintained only for some characterizing points of the structure 4.3 Solid mesophases References Chapter 4 Chapter 5 Methods of Analysis of Diffuse Scattering from Disordered Structures of Polymers 5.1 Structural disorder and diffuse scattering 5.2 Methods of diffraction analysis from disordered crystals 5.3 Long Range Order in Disordered Lattices of Class A 5.4 Short Range Order in Disordered Crystals of Class A 5.5 Short Range Order in Disordered Crystals with Substitution type Disorder 5.6 Short Range vs Long Range Order in Disordered Crystals of Class B and C (Solid Mesophases) 5.7 Disordered Models with Perturbations Occurring over Continuous Ranges 5.8 Basic formulas for the calculation of X-ray Diffraction Intensity from Disordered Model Structures of Polymers 5.9 Examples of calculation of average diffracted intensity of structures disordered in one dimension 5.10 Integration method of diffraction intensity for cylindrically and spherical surfaces in the reciprocal space References Chapter 5 Chapter 6 Crystal habit 6.1 Basic remark 6.2 Rounded lateral habits 6.3 Chain folding, molecular orientation and sectorization 6.4 Twinning and secondary nucleation theory 6.5 Homoepitaxy, morphology, stem orientation and polymorphism References Chapter 6 Chapter 7 Influence of Crystal Defects and Structural Disorder on the Physical and Mechanical Properties of Polymeric Materials 7.1 Introduction 7.2 Stress induced phase transformations during deformation 7.3 Isotactic polypropylene 7.4 Syndiotactic Polypropylene References Chapter 7.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
222
Crystals and crystallinity in polymers : diffraction analysis of ordered and disordered crystals /
Published 2014Table of Contents: “…Machine generated contents note: Chapter 1 Configuration and Conformation of Macromolecules in Polymer Crystals 1.1 Crystals of polymers 1.2 Constitution and configuration of crystalline polymers 1.3 Conformation 1.4 Relationships among internal parameters of macromolecules 1.5 Conformation of polymer chains in the crystalline state 1.6 Helical conformations in isotactic and syndiotactic polymers 1.7 Conformational energy calculations 1.8 Helical conformation and optical activity 1.9 Alternating copolymers 1.10 Polydienes 1.11 Non helical chain conformations of isotactic polymers References Chapter 1 Chapter 2 Packing of macromolecules in polymer crystals 2.1 General principles 2.2 The principle of density (entropy)-driven phase formation in polymers 2.3 Symmetry breaking 2.4 Impact of chain folding on crystal structure symmetry 2.5 Frustrated Polymer Crystal Structures 2.6 Chiral crystallization of polymers with helical chain conformations 2.7 Packing effects on the conformation of polymer chains in the crystals: the case of aliphatic polyamides References Chapter 2 Chapter 3 3.1 X-ray diffraction of semicrystalline polymers 3.2 Fourier synthesis and the phase problem in crystallography 3.3 X-ray fiber diffraction analysis 3.4 Determination of parameters of the unit cell and indexing of the diffraction pattern 3.5 Measure of the integrated intensities of the reflections and corrections for geometrical (Lorentz), polarization and absorption factors 3.6 Calculation of Structure Factors 3.7 Structural refinement 3.8 Form of diffraction pattern and broadening due to the Laue function References Chapter 3 Chapter 4 Defects and Disorder in Polymer Crystals 4.1 Classification of different types of structural disorder 4.2 Crystals with partial three-dimensional order (Class A)Disorder with three-dimensional periodicity maintained only for some characterizing points of the structure 4.3 Solid mesophases References Chapter 4 Chapter 5 Methods of Analysis of Diffuse Scattering from Disordered Structures of Polymers 5.1 Structural disorder and diffuse scattering 5.2 Methods of diffraction analysis from disordered crystals 5.3 Long Range Order in Disordered Lattices of Class A 5.4 Short Range Order in Disordered Crystals of Class A 5.5 Short Range Order in Disordered Crystals with Substitution type Disorder 5.6 Short Range vs Long Range Order in Disordered Crystals of Class B and C (Solid Mesophases) 5.7 Disordered Models with Perturbations Occurring over Continuous Ranges 5.8 Basic formulas for the calculation of X-ray Diffraction Intensity from Disordered Model Structures of Polymers 5.9 Examples of calculation of average diffracted intensity of structures disordered in one dimension 5.10 Integration method of diffraction intensity for cylindrically and spherical surfaces in the reciprocal space References Chapter 5 Chapter 6 Crystal habit 6.1 Basic remark 6.2 Rounded lateral habits 6.3 Chain folding, molecular orientation and sectorization 6.4 Twinning and secondary nucleation theory 6.5 Homoepitaxy, morphology, stem orientation and polymorphism References Chapter 6 Chapter 7 Influence of Crystal Defects and Structural Disorder on the Physical and Mechanical Properties of Polymeric Materials 7.1 Introduction 7.2 Stress induced phase transformations during deformation 7.3 Isotactic polypropylene 7.4 Syndiotactic Polypropylene References Chapter 7.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
223
The psychology and physiology of reaching a healthy weight /
Published 2015Table of Contents: “…Calorie-smart food and drink choices (high fiber and/or nutrient dense) -- Appendix D. How to read a food label -- Appendix E. …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
224
The psychology and physiology of reaching a healthy weight /
Published 2015Table of Contents: “…Calorie-smart food and drink choices (high fiber and/or nutrient dense) -- Appendix D. How to read a food label -- Appendix E. …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
225
-
226
-
227
Aerospace sensors
Published 2013Table of Contents: “…Gyroscopic devices and sensors -- 6.1 Introduction -- 6.1.1 Preliminary remarks -- 6.1.2 Classification of gyros -- 6.1.3 Gyroscopic instruments -- 6.1.4 Positional gyros -- 6.1.5 The vertical (or horizontal) gyro -- 6.1.6 Orbit gyro -- 6.1.7 Single degree of freedom (SDF) gyros -- 6.1.8 Gyro stabilizers -- 6.1.9 Gyroscopic instruments in aeronavigation -- 6.1.10 Inertial navigation systems (INS) -- 6.1.10.1 Types of INS -- 6.1.10.2 Strapdown INS -- 6.1.11 The scope of gyros and gyro instruments of various types -- 6.2 Single degree of freedom (SDF) gyros -- 6.2.1 The solid rotor SDF gyro -- 6.2.2 The integrating gyro -- 6.2.3 Rate of speed gauging -- 6.2.3.1 Feedback contours of the angular rate gauge -- 6.2.3.2 Design variants -- 6.3 The TDF gyro in gimbal mountings -- 6.3.1 Properties of a free gyro -- 6.3.2 Areas of application, design features, and error sources -- 6.3.3 Two-component angular speed measuring instruments -- 6.4 The gyroscopic integrator for linear acceleration (GILA) -- 6.4.1 Principles of GILA operation -- 6.4.2 Sources of GILA errors -- 6.5 Contactless suspension gyros -- 6.5.1 Introduction -- 6.5.2 The electrostatic gyroscope (ESG) -- 6.5.2.1 ESG accuracy -- 6.5.2.2 The ESG rotor -- 6.5.2.3 The rotor electrostatic suspension -- 6.5.2.4 Angular rotor position readout -- 6.5.3 Conclusion -- 6.6 The fiber optic gyro (FOG) -- 6.6.1 The interferometric fiber optic gyro (IFOG) -- 6.6.1.1 The basic IFOG scheme and the Sagnac effect -- 6.6.1.2 Open-loop operation -- 6.6.1.3 Closed-loop operation -- 6.6.1.4 Fundamental limitations -- 6.6.1.5 The multiple-axis IFOG -- 6.6.1.6 The depolarized IFOG -- 6.6.1.7 Applications of the IFOG -- 6.6.2 The resonator fiber optic gyro (RFOG) -- 6.7 The ring laser gyro (RLG) -- 6.7.1 Introduction -- 6.7.2 Principle of operation -- 6.7.3 Frequency characteristics and mode-locking counter-rotating waves -- 6.7.4 The elimination of mode-locking in counter-rotating waves -- 6.7.5 Errors -- 6.7.6 Performance and application -- 6.7.7 Conclusion -- 6.8 Dynamically tuned gyros (DTG) -- 6.8.1 Introduction -- 6.8.2 Key diagrams and dynamic tuning -- 6.8.3 Operating modes -- 6.8.4 Disturbance moments depending on external factors and instrumental errors -- 6.8.5 Magnetic, aerodynamic, and thermal disturbance moments -- 6.8.6 Design, application, technical characteristics -- 6.8.7 Conclusion -- 6.9 Solid vibrating gyros -- 6.9.1 Introduction -- 6.9.2 Dynamic behavior of the ideal solid vibrating gyro -- 6.9.3 Operating modes of the solid vibrating gyro -- 6.9.4 The nonideal solid vibrating gyro -- 6.9.5 Control of the solid vibrating gyro -- 6.9.6 Axisymmetric-shell gyros -- 6.9.7 The HRG, history and current status -- 6.9.8 HRG design characteristics -- 6.9.9 Additional HRG references -- 6.10 Micromechanical gyros -- 6.10.1 Introduction -- 6.10.2 Operating principles -- 6.10.2.1 Linear-linear (LL-type) gyros -- 6.10.2.2 Rotary-rotary (RR-type) gyro principles -- 6.10.2.3 Fork and rod gyro principles -- 6.10.2.4 Ring gyro principles -- 6.10.3 Adjustment of oscillation modes in gyros of the LL and RR types -- 6.10.4 Design, application, and performance -- 6.10.4.1 Gyros of the LL and RR-type -- 6.10.4.2 Fork and rod gyros -- 6.10.4.3 Ring gyros -- 6.10.5 Conclusion -- References --…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
228
Aerospace sensors
Published 2013Table of Contents: “…Gyroscopic devices and sensors -- 6.1 Introduction -- 6.1.1 Preliminary remarks -- 6.1.2 Classification of gyros -- 6.1.3 Gyroscopic instruments -- 6.1.4 Positional gyros -- 6.1.5 The vertical (or horizontal) gyro -- 6.1.6 Orbit gyro -- 6.1.7 Single degree of freedom (SDF) gyros -- 6.1.8 Gyro stabilizers -- 6.1.9 Gyroscopic instruments in aeronavigation -- 6.1.10 Inertial navigation systems (INS) -- 6.1.10.1 Types of INS -- 6.1.10.2 Strapdown INS -- 6.1.11 The scope of gyros and gyro instruments of various types -- 6.2 Single degree of freedom (SDF) gyros -- 6.2.1 The solid rotor SDF gyro -- 6.2.2 The integrating gyro -- 6.2.3 Rate of speed gauging -- 6.2.3.1 Feedback contours of the angular rate gauge -- 6.2.3.2 Design variants -- 6.3 The TDF gyro in gimbal mountings -- 6.3.1 Properties of a free gyro -- 6.3.2 Areas of application, design features, and error sources -- 6.3.3 Two-component angular speed measuring instruments -- 6.4 The gyroscopic integrator for linear acceleration (GILA) -- 6.4.1 Principles of GILA operation -- 6.4.2 Sources of GILA errors -- 6.5 Contactless suspension gyros -- 6.5.1 Introduction -- 6.5.2 The electrostatic gyroscope (ESG) -- 6.5.2.1 ESG accuracy -- 6.5.2.2 The ESG rotor -- 6.5.2.3 The rotor electrostatic suspension -- 6.5.2.4 Angular rotor position readout -- 6.5.3 Conclusion -- 6.6 The fiber optic gyro (FOG) -- 6.6.1 The interferometric fiber optic gyro (IFOG) -- 6.6.1.1 The basic IFOG scheme and the Sagnac effect -- 6.6.1.2 Open-loop operation -- 6.6.1.3 Closed-loop operation -- 6.6.1.4 Fundamental limitations -- 6.6.1.5 The multiple-axis IFOG -- 6.6.1.6 The depolarized IFOG -- 6.6.1.7 Applications of the IFOG -- 6.6.2 The resonator fiber optic gyro (RFOG) -- 6.7 The ring laser gyro (RLG) -- 6.7.1 Introduction -- 6.7.2 Principle of operation -- 6.7.3 Frequency characteristics and mode-locking counter-rotating waves -- 6.7.4 The elimination of mode-locking in counter-rotating waves -- 6.7.5 Errors -- 6.7.6 Performance and application -- 6.7.7 Conclusion -- 6.8 Dynamically tuned gyros (DTG) -- 6.8.1 Introduction -- 6.8.2 Key diagrams and dynamic tuning -- 6.8.3 Operating modes -- 6.8.4 Disturbance moments depending on external factors and instrumental errors -- 6.8.5 Magnetic, aerodynamic, and thermal disturbance moments -- 6.8.6 Design, application, technical characteristics -- 6.8.7 Conclusion -- 6.9 Solid vibrating gyros -- 6.9.1 Introduction -- 6.9.2 Dynamic behavior of the ideal solid vibrating gyro -- 6.9.3 Operating modes of the solid vibrating gyro -- 6.9.4 The nonideal solid vibrating gyro -- 6.9.5 Control of the solid vibrating gyro -- 6.9.6 Axisymmetric-shell gyros -- 6.9.7 The HRG, history and current status -- 6.9.8 HRG design characteristics -- 6.9.9 Additional HRG references -- 6.10 Micromechanical gyros -- 6.10.1 Introduction -- 6.10.2 Operating principles -- 6.10.2.1 Linear-linear (LL-type) gyros -- 6.10.2.2 Rotary-rotary (RR-type) gyro principles -- 6.10.2.3 Fork and rod gyro principles -- 6.10.2.4 Ring gyro principles -- 6.10.3 Adjustment of oscillation modes in gyros of the LL and RR types -- 6.10.4 Design, application, and performance -- 6.10.4.1 Gyros of the LL and RR-type -- 6.10.4.2 Fork and rod gyros -- 6.10.4.3 Ring gyros -- 6.10.5 Conclusion -- References --…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
229
The physics of microdroplets
Published 2012Table of Contents: “…Open Microfluidics 209 -- 8.1 Abstract 209 -- 8.2 Droplet Pierced by a Wire 210 -- 8.3 Liquid Spreading Between Solid Structures - Spontaneous Capillary Flow 216 -- 8.4 Liquid Wetting Fibers 239 -- 8.5 Conclusions 247 -- 8.6 References 248 -- 8.7 Appendix: Calculation of the Laplace Pressure for a Droplet on a Horizontal Cylindrical Wire 250 -- 9. …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
230
The physics of microdroplets
Published 2012Table of Contents: “…Open Microfluidics 209 -- 8.1 Abstract 209 -- 8.2 Droplet Pierced by a Wire 210 -- 8.3 Liquid Spreading Between Solid Structures - Spontaneous Capillary Flow 216 -- 8.4 Liquid Wetting Fibers 239 -- 8.5 Conclusions 247 -- 8.6 References 248 -- 8.7 Appendix: Calculation of the Laplace Pressure for a Droplet on a Horizontal Cylindrical Wire 250 -- 9. …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
231
Fatigue of materials and structures application to design and damage /
Published 2011Table of Contents: “…Superposition" method -- 3.4.5.Superposition method: applicable examples -- 3.4.6.Numerical application exercise -- 3.5.Performing some "damage tolerance" calculations -- 3.5.1.Complementarity of fatigue and damage tolerance -- 3.5.2.Safety coefficients to understand curve a = f(N) -- 3.5.3.Acquisition of the material parameters -- 3.5.4.Negative parameter: corrosion -- "corrosion fatigue" -- 3.6.Application to the residual strength of thin sheets -- 3.6.1.Planar panels: Feddersen diagram -- 3.6.2.Case of stiffened panels -- 3.7.Propagation of cracks subjected to random loading in the aeronautic industry -- 3.7.1.Modeling of the interactions of loading cycles -- 3.7.2.Comparison of predictions with experimental results -- 3.7.3.Rainflow treatment of random loadings -- 3.8.Conclusion -- 3.8.1.Organization of the evolution of "damage tolerance" -- 3.8.2.Structural maintenance program -- 3.8.3.Inspection of structures being used -- 3.9.Damage tolerance within the gigacyclic domain -- 3.9.1.Observations on crack propagation -- 3.9.2.Propagation of a fish-eye with regards to damage tolerance -- 3.9.3.Example of a turbine disk subjected to vibration -- 3.10.Bibliography -- ch. 4 Defect Influence on the Fatigue Behavior of Metallic Materials / Gilles Baudry -- 4.1.Introduction -- 4.2.Some facts -- 4.2.1.Failure observation -- 4.2.2.Endurance limit level -- 4.2.3.Influence of the rolling reduction ratio and the effect of rolling direction -- 4.2.4.Low cycle fatigue: SN curves -- 4.2.5.Wohler curve: existence of an endurance limit -- 4.2.6.Summary -- 4.3.Approaches -- 4.3.1.First models -- 4.3.2.Kitagawa diagram -- 4.3.3.Murakami model -- 4.4.A few examples -- 4.4.1.Medium-loaded components: example of as-forged parts: connecting rods -- effect of the forging skin -- 4.4.2.High-loaded components: relative importance of cleanliness and surface state -- example of the valve spring -- 4.4.3.High-loaded components: Bearings-Endurance cleanliness relationship -- 4.5.Prospects -- 4.5.1.Estimation of lifetimes and their dispersions -- 4.5.2.Fiber orientation -- 4.5.3.Prestressing -- 4.5.4.Corrosion -- 4.5.5.Complex loadings: spectra/over-loadings/multiaxial loadings -- 4.5.6.Gigacycle fatigue -- 4.6.Conclusion -- 4.7.Bibliography -- ch. 5 Fretting Fatigue: Modeling and Applications / Trevor Lindley -- 5.1.Introduction -- 5.2.Experimental methods -- 5.2.1.Fatigue specimens and contact pads -- 5.2.2.Fatigue S-N data with and without fretting -- 5.2.3.Frictional force measurement -- 5.2.4.Metallography and fractography -- 5.2.5.Mechanisms in fretting fatigue -- 5.3.Fretting fatigue analysis -- 5.3.1.The S-N approach -- 5.3.2.Fretting modeling -- 5.3.3.Two-body contact -- 5.3.4.Fatigue crack initiation -- 5.3.5.Analysis of cracks: the fracture mechanics approach -- 5.3.6.Propagation -- 5.4.Applications under fretting conditions -- 5.4.1.Metallic material: partial slip regime -- 5.4.2.Epoxy polymers: development of cracks under a total slip regime -- 5.5.Palliatives to combat fretting fatigue -- 5.6.Conclusions -- 5.7.Bibliography -- ch. 6 Contact Fatigue / Ky Dang Van -- 6.1.Introduction -- 6.2.Classification of the main types of contact damage -- 6.2.1.Background -- 6.2.2.Damage induced by rolling contacts with or without sliding effect -- 6.2.3.Fretting -- 6.3.A few results on contact mechanics -- 6.3.1.Hertz solution -- 6.3.2.Case of contact with friction under total sliding conditions -- 6.3.3.Case of contact with partial sliding -- 6.3.4.Elastic contact between two solids of different elastic modules -- 6.3.5.3D elastic contact -- 6.4.Elastic limit -- 6.5.Elastoplastic contact -- 6.5.1.Stationary methods -- 6.5.2.Direct cyclic method -- 6.6.Application to modeling of a few contact fatigue issues -- 6.6.1.General methodology -- 6.6.2.Initiation of fatigue cracks in rails -- 6.6.3.Propagation of initiated cracks -- 6.6.4.Application to fretting fatigue -- 6.7.Conclusion -- 6.8.Bibliography -- ch. 7 Thermal Fatigue / Luc Remy -- 7.1.Introduction -- 7.2.Characterization tests -- 7.2.1.Cyclic mechanical behavior -- 7.2.2.Damage -- 7.3.Constitutive and damage models at variable temperatures -- 7.3.1.Constitutive laws -- 7.3.2.Damage process modeling based on fatigue conditions -- 7.3.3.Modeling the damage process in complex cases: towards considering interactions with creep and oxidation phenomena -- 7.4.Applications -- 7.4.1.Exhaust manifolds in automotive industry -- 7.4.2.Cylinder heads made from aluminum alloys in the automotive industry -- 7.4.3.Brake disks in the rail and automotive industries -- 7.4.4.Nuclear industry pipes -- 7.4.5.Simple structures simulating turbine blades -- 7.5.Conclusion -- 7.6.Bibliography.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
232
Fatigue of materials and structures application to design and damage /
Published 2011Table of Contents: “…Superposition" method -- 3.4.5.Superposition method: applicable examples -- 3.4.6.Numerical application exercise -- 3.5.Performing some "damage tolerance" calculations -- 3.5.1.Complementarity of fatigue and damage tolerance -- 3.5.2.Safety coefficients to understand curve a = f(N) -- 3.5.3.Acquisition of the material parameters -- 3.5.4.Negative parameter: corrosion -- "corrosion fatigue" -- 3.6.Application to the residual strength of thin sheets -- 3.6.1.Planar panels: Feddersen diagram -- 3.6.2.Case of stiffened panels -- 3.7.Propagation of cracks subjected to random loading in the aeronautic industry -- 3.7.1.Modeling of the interactions of loading cycles -- 3.7.2.Comparison of predictions with experimental results -- 3.7.3.Rainflow treatment of random loadings -- 3.8.Conclusion -- 3.8.1.Organization of the evolution of "damage tolerance" -- 3.8.2.Structural maintenance program -- 3.8.3.Inspection of structures being used -- 3.9.Damage tolerance within the gigacyclic domain -- 3.9.1.Observations on crack propagation -- 3.9.2.Propagation of a fish-eye with regards to damage tolerance -- 3.9.3.Example of a turbine disk subjected to vibration -- 3.10.Bibliography -- ch. 4 Defect Influence on the Fatigue Behavior of Metallic Materials / Gilles Baudry -- 4.1.Introduction -- 4.2.Some facts -- 4.2.1.Failure observation -- 4.2.2.Endurance limit level -- 4.2.3.Influence of the rolling reduction ratio and the effect of rolling direction -- 4.2.4.Low cycle fatigue: SN curves -- 4.2.5.Wohler curve: existence of an endurance limit -- 4.2.6.Summary -- 4.3.Approaches -- 4.3.1.First models -- 4.3.2.Kitagawa diagram -- 4.3.3.Murakami model -- 4.4.A few examples -- 4.4.1.Medium-loaded components: example of as-forged parts: connecting rods -- effect of the forging skin -- 4.4.2.High-loaded components: relative importance of cleanliness and surface state -- example of the valve spring -- 4.4.3.High-loaded components: Bearings-Endurance cleanliness relationship -- 4.5.Prospects -- 4.5.1.Estimation of lifetimes and their dispersions -- 4.5.2.Fiber orientation -- 4.5.3.Prestressing -- 4.5.4.Corrosion -- 4.5.5.Complex loadings: spectra/over-loadings/multiaxial loadings -- 4.5.6.Gigacycle fatigue -- 4.6.Conclusion -- 4.7.Bibliography -- ch. 5 Fretting Fatigue: Modeling and Applications / Trevor Lindley -- 5.1.Introduction -- 5.2.Experimental methods -- 5.2.1.Fatigue specimens and contact pads -- 5.2.2.Fatigue S-N data with and without fretting -- 5.2.3.Frictional force measurement -- 5.2.4.Metallography and fractography -- 5.2.5.Mechanisms in fretting fatigue -- 5.3.Fretting fatigue analysis -- 5.3.1.The S-N approach -- 5.3.2.Fretting modeling -- 5.3.3.Two-body contact -- 5.3.4.Fatigue crack initiation -- 5.3.5.Analysis of cracks: the fracture mechanics approach -- 5.3.6.Propagation -- 5.4.Applications under fretting conditions -- 5.4.1.Metallic material: partial slip regime -- 5.4.2.Epoxy polymers: development of cracks under a total slip regime -- 5.5.Palliatives to combat fretting fatigue -- 5.6.Conclusions -- 5.7.Bibliography -- ch. 6 Contact Fatigue / Ky Dang Van -- 6.1.Introduction -- 6.2.Classification of the main types of contact damage -- 6.2.1.Background -- 6.2.2.Damage induced by rolling contacts with or without sliding effect -- 6.2.3.Fretting -- 6.3.A few results on contact mechanics -- 6.3.1.Hertz solution -- 6.3.2.Case of contact with friction under total sliding conditions -- 6.3.3.Case of contact with partial sliding -- 6.3.4.Elastic contact between two solids of different elastic modules -- 6.3.5.3D elastic contact -- 6.4.Elastic limit -- 6.5.Elastoplastic contact -- 6.5.1.Stationary methods -- 6.5.2.Direct cyclic method -- 6.6.Application to modeling of a few contact fatigue issues -- 6.6.1.General methodology -- 6.6.2.Initiation of fatigue cracks in rails -- 6.6.3.Propagation of initiated cracks -- 6.6.4.Application to fretting fatigue -- 6.7.Conclusion -- 6.8.Bibliography -- ch. 7 Thermal Fatigue / Luc Remy -- 7.1.Introduction -- 7.2.Characterization tests -- 7.2.1.Cyclic mechanical behavior -- 7.2.2.Damage -- 7.3.Constitutive and damage models at variable temperatures -- 7.3.1.Constitutive laws -- 7.3.2.Damage process modeling based on fatigue conditions -- 7.3.3.Modeling the damage process in complex cases: towards considering interactions with creep and oxidation phenomena -- 7.4.Applications -- 7.4.1.Exhaust manifolds in automotive industry -- 7.4.2.Cylinder heads made from aluminum alloys in the automotive industry -- 7.4.3.Brake disks in the rail and automotive industries -- 7.4.4.Nuclear industry pipes -- 7.4.5.Simple structures simulating turbine blades -- 7.5.Conclusion -- 7.6.Bibliography.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
233
Soft magnetic materials : selected, peer reviewed paper [i.e. papers] from 2011 International Conference on Soft Magnetic Materials (ICSMM 2011) on May 23-24, in Male, Maldives /
Published 2011Table of Contents: “…Zhang -- Sensing Textile Fibers by THz Time-Domain Spectroscopy / Z. Tian -- Converse Magnetoelectric Coefficient of Terfenol-D/PZT/Terfenol-D Laminated Magnetoelectric Composite / W.M. …”
An electronic book accessible through the World Wide Web; click to view
Electronic Conference Proceeding eBook -
234
Soft magnetic materials : selected, peer reviewed paper [i.e. papers] from 2011 International Conference on Soft Magnetic Materials (ICSMM 2011) on May 23-24, in Male, Maldives /
Published 2011Table of Contents: “…Zhang -- Sensing Textile Fibers by THz Time-Domain Spectroscopy / Z. Tian -- Converse Magnetoelectric Coefficient of Terfenol-D/PZT/Terfenol-D Laminated Magnetoelectric Composite / W.M. …”
An electronic book accessible through the World Wide Web; click to view
Electronic Conference Proceeding eBook -
235
-
236
-
237
-
238
-
239
-
240