Search Results - "decision analysis"
Suggested Topics within your search.
Suggested Topics within your search.
- Decision making 12
- Operations Research/Decision Theory 8
- Economics 6
- Economics/Management Science 6
- Finance 6
- Mathematical models 6
- Petroleum industry and trade 6
- Management 4
- Mathematical optimization 4
- Multiple criteria decision making 4
- Operations Research, Mathematical Programming 4
- Operations research 4
- Probabilities 4
- Artificial intelligence 2
- Bayesian statistical decision theory 2
- Business logistics 2
- Cash flow 2
- Cost effectiveness 2
- Data processing 2
- Decision support systems 2
- Diagnosis, Differential 2
- Econometrics 2
- Economics, Mathematical 2
- Environment 2
- Environmental Economics 2
- Environmental Management 2
- Environmental economics 2
- Environmental management 2
- Environmental sciences 2
- Financial Economics 2
-
21
Multiple Criteria Decision Analysis: State of the Art Surveys
Published 2005Get full text
Electronic eBook -
22
-
23
-
24
Multiple Criteria Decision Analysis: State of the Art Surveys
Published 2005Get full text
Electronic eBook -
25
-
26
-
27
-
28
-
29
Analytic processes for school leaders
Published 2001Table of Contents: “…Rational thinking as a process -- Thinking about questions -- Decision analysis : what's our best choice? -- Potential problem analysis : what could go wrong? …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
30
Analytic processes for school leaders
Published 2001Table of Contents: “…Rational thinking as a process -- Thinking about questions -- Decision analysis : what's our best choice? -- Potential problem analysis : what could go wrong? …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
31
Medical decision making
Published 2013Table of Contents: “…Machine generated contents note: Differential Diagnosis -- Probability: Quantifying Uncertainty -- Understanding New Information: Bayes' Theorem -- Measuring the Accuracy of Diagnostic Information -- Expected Value Decision Analysis -- Markov Models and Time-Varying Outcomes --Measuring the Outcome of Care -- Selection and Interpretation of Diagnostic Tests -- Cost-Effectiveness Analysis and Cost-Benefit Analysis -- Medical Decision Making In Practice: Advanced Methods -- Index.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
32
Medical decision making
Published 2013Table of Contents: “…Machine generated contents note: Differential Diagnosis -- Probability: Quantifying Uncertainty -- Understanding New Information: Bayes' Theorem -- Measuring the Accuracy of Diagnostic Information -- Expected Value Decision Analysis -- Markov Models and Time-Varying Outcomes --Measuring the Outcome of Care -- Selection and Interpretation of Diagnostic Tests -- Cost-Effectiveness Analysis and Cost-Benefit Analysis -- Medical Decision Making In Practice: Advanced Methods -- Index.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
33
Handbook of biosurveillance
Published 2006Table of Contents: “…Wagner and Murray Campbell -- Decision analysis / Agnieszka Onisko, Garrick Wallstrom, and Michael M. …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
34
Handbook of biosurveillance
Published 2006Table of Contents: “…Wagner and Murray Campbell -- Decision analysis / Agnieszka Onisko, Garrick Wallstrom, and Michael M. …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
35
Multicriteria decision aid and artificial intelligence links, theory and applications /
Published 2013Table of Contents: “…Machine generated contents note: List of Contributors Preface Part One The Contributions of Intelligent Techniques in Multicriteria Decision Aiding 1 Computational Intelligence Techniques for Multicriteria Decision Aiding: An Overview 1.1 Introduction 1.2 The MCDA Paradigm 1.2.1 Modeling Process 1.2.2 Methodological Approaches 1.3 Computational Intelligence in MCDA 1.3.1 Statistical Learning and Data Mining 1.3.2 Fuzzy Modeling 1.3.3 Metaheuristics 1.4 Conclusions References 2 Intelligent Decision Support Systems 2.1 Introduction 2.2 Fundamentals of Human Decision Making 2.3 Decision Support System 2.4 Intelligent Decision Support Systems 2.4.1 Artificial Neural Networks for Intelligent Decision Support 2.4.2 Fuzzy Logic for Intelligent Decision Support 2.4.3 Expert Systems for Intelligent Decision Support 2.4.4 Evolutionary Computing for Intelligent Decision Support 2.4.5 Intelligent Agents for Intelligent Decision Support 2.5 Evaluating Intelligent Decision Support Systems 2.5.1 Determining Evaluation Criteria 2.5.2 Multi-Criteria Model for IDSS Assessment 2.6 Summary and Future Trends References Part Two Intelligent Technologies for Decision Support and Preference Modeling 3 Designing Distributed Multi-Criteria Decision Support Systems for Complex and Uncertain Situations 3.1 Introduction 3.2 Example Applications 3.3 Key Challenges 3.4 Making Trade-offs: Multi-criteria Decision Analysis 3.4.1 Multi-attribute Decision Support 3.4.2 Making Trade-offs Under Uncertainty 3.5 Exploring the Future: Scenario-based Reasoning 3.6 Making Robust Decisions: Combining MCDA and SBR 3.6.1 Decisions Under Uncertainty: The Concept of Robustness 3.6.2 Combining Scenarios and MCDA 3.6.3 Collecting, Sharing and Processing Information: A Distributed Approach 3.6.4 Keeping Track of Future Developments: Constructing Comparable Scenarios 3.6.5 Respecting Constraints and Requirements: Scenario Management 3.6.6 Assisting Evaluation: Assessing Large Numbers of Scenarios 3.7 Discussion 3.8 Conclusion References 4 Preference Representation with Ontologies 4.1 Introduction 4.1.1 Structure of the Chapter 4.2 Ontology-based Preference Models 4.3 Maintaining the User's Profile up to Date 4.4 Decision Making Methods Exploiting the Preference Information Stored in Ontologies 4.4.1 Recommendation Based on Aggregation 4.4.2 Recommendation Based on Similarities 4.4.3 Recommendation Based on Rules 4.5 Discussion and Open Questions References Part Three Decision Models 5 Neural Networks in Multicriteria Decision Support 5.1 Introduction 5.2 Basic Concepts of Neural Networks 5.2.1 Neural Networks for Intelligent Decision Support 5.3 Basics in Multicriteria Decision Aid 5.3.1 MCDM Problems 5.3.2 Solutions of MCDM Problems 5.4 Neural Networks and Multicriteria Decision Support 5.4.1 Review of Neural Network Applications to MCDM Problems 5.4.2 Discussion 5.5 Summary and Conclusions References 6 Rule-Based Approach to Multicriteria Ranking 6.1 Introduction 6.2 Problem Setting 6.3 Pairwise Comparison Table (PCT) 6.4 Rough Approximation of Outranking and Non-outranking Relations 6.5 Induction and Application of Decision Rules 6.6 Exploitation of Preference Graphs 6.7 Illustrative Example 6.8 Summary and Conclusions References 7 About the Application of Evidence Theory in MultiCriteria Decision Aid 7.1 Introduction 7.2 Evidence Theory: Some Concepts 7.2.1 Knowledge Model 7.2.2 Combination 7.2.3 Decision Making 7.3 New Concepts in Evidence Theory for MCDA 7.3.1 First Belief Dominance 7.3.2 RBBD Concept 7.4 Multicriteria Methods modeled by Evidence Theory 7.4.1 Evidential Reasoning Approach 7.4.2 DS/AHP 7.4.3 DISSET 7.4.4 A Choice Model Inspired by ELECTRE I 7.4.5 A Ranking Model Inspired by Xu et al.'…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
36
Multicriteria decision aid and artificial intelligence links, theory and applications /
Published 2013Table of Contents: “…Machine generated contents note: List of Contributors Preface Part One The Contributions of Intelligent Techniques in Multicriteria Decision Aiding 1 Computational Intelligence Techniques for Multicriteria Decision Aiding: An Overview 1.1 Introduction 1.2 The MCDA Paradigm 1.2.1 Modeling Process 1.2.2 Methodological Approaches 1.3 Computational Intelligence in MCDA 1.3.1 Statistical Learning and Data Mining 1.3.2 Fuzzy Modeling 1.3.3 Metaheuristics 1.4 Conclusions References 2 Intelligent Decision Support Systems 2.1 Introduction 2.2 Fundamentals of Human Decision Making 2.3 Decision Support System 2.4 Intelligent Decision Support Systems 2.4.1 Artificial Neural Networks for Intelligent Decision Support 2.4.2 Fuzzy Logic for Intelligent Decision Support 2.4.3 Expert Systems for Intelligent Decision Support 2.4.4 Evolutionary Computing for Intelligent Decision Support 2.4.5 Intelligent Agents for Intelligent Decision Support 2.5 Evaluating Intelligent Decision Support Systems 2.5.1 Determining Evaluation Criteria 2.5.2 Multi-Criteria Model for IDSS Assessment 2.6 Summary and Future Trends References Part Two Intelligent Technologies for Decision Support and Preference Modeling 3 Designing Distributed Multi-Criteria Decision Support Systems for Complex and Uncertain Situations 3.1 Introduction 3.2 Example Applications 3.3 Key Challenges 3.4 Making Trade-offs: Multi-criteria Decision Analysis 3.4.1 Multi-attribute Decision Support 3.4.2 Making Trade-offs Under Uncertainty 3.5 Exploring the Future: Scenario-based Reasoning 3.6 Making Robust Decisions: Combining MCDA and SBR 3.6.1 Decisions Under Uncertainty: The Concept of Robustness 3.6.2 Combining Scenarios and MCDA 3.6.3 Collecting, Sharing and Processing Information: A Distributed Approach 3.6.4 Keeping Track of Future Developments: Constructing Comparable Scenarios 3.6.5 Respecting Constraints and Requirements: Scenario Management 3.6.6 Assisting Evaluation: Assessing Large Numbers of Scenarios 3.7 Discussion 3.8 Conclusion References 4 Preference Representation with Ontologies 4.1 Introduction 4.1.1 Structure of the Chapter 4.2 Ontology-based Preference Models 4.3 Maintaining the User's Profile up to Date 4.4 Decision Making Methods Exploiting the Preference Information Stored in Ontologies 4.4.1 Recommendation Based on Aggregation 4.4.2 Recommendation Based on Similarities 4.4.3 Recommendation Based on Rules 4.5 Discussion and Open Questions References Part Three Decision Models 5 Neural Networks in Multicriteria Decision Support 5.1 Introduction 5.2 Basic Concepts of Neural Networks 5.2.1 Neural Networks for Intelligent Decision Support 5.3 Basics in Multicriteria Decision Aid 5.3.1 MCDM Problems 5.3.2 Solutions of MCDM Problems 5.4 Neural Networks and Multicriteria Decision Support 5.4.1 Review of Neural Network Applications to MCDM Problems 5.4.2 Discussion 5.5 Summary and Conclusions References 6 Rule-Based Approach to Multicriteria Ranking 6.1 Introduction 6.2 Problem Setting 6.3 Pairwise Comparison Table (PCT) 6.4 Rough Approximation of Outranking and Non-outranking Relations 6.5 Induction and Application of Decision Rules 6.6 Exploitation of Preference Graphs 6.7 Illustrative Example 6.8 Summary and Conclusions References 7 About the Application of Evidence Theory in MultiCriteria Decision Aid 7.1 Introduction 7.2 Evidence Theory: Some Concepts 7.2.1 Knowledge Model 7.2.2 Combination 7.2.3 Decision Making 7.3 New Concepts in Evidence Theory for MCDA 7.3.1 First Belief Dominance 7.3.2 RBBD Concept 7.4 Multicriteria Methods modeled by Evidence Theory 7.4.1 Evidential Reasoning Approach 7.4.2 DS/AHP 7.4.3 DISSET 7.4.4 A Choice Model Inspired by ELECTRE I 7.4.5 A Ranking Model Inspired by Xu et al.'…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook