Search Results - "algorithm"
Suggested Topics within your search.
Suggested Topics within your search.
- Algorithms 128
- Computer algorithms 101
- Data processing 64
- Mathematics 62
- Mathematical models 56
- Computer science 54
- Economics 44
- Economics/Management Science 38
- Data mining 34
- Operations Research/Decision Theory 30
- Artificial intelligence 28
- Mathematical optimization 26
- Bioinformatics 24
- Computer Science 24
- Computer simulation 24
- Digital techniques 24
- Data structures (Computer science) 23
- Computer software 22
- Image processing 22
- Signal processing 22
- Data Mining and Knowledge Discovery 18
- Computational Biology/Bioinformatics 16
- Computational Science and Engineering 16
- Computer mathematics 16
- Genetic algorithms 16
- Machine learning 16
- Technological innovations 16
- Algorithm Analysis and Problem Complexity 14
- Computer programming 14
- Database management 14
-
661
Understanding ultrasonic level measurement
Published 2013Table of Contents: “…. -- Ultrasonic instrumentation -- The transducer -- Transducer environments -- Transducer accuracy -- Transducer resolution and accuracy -- Impedance matching -- Axis of transmission -- Beam width -- Beam spreading -- Ringdown -- The controllers -- Digital filtering -- Averaging echoes -- Echo extraction algorithms -- Summary -- Notes --…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
662
Understanding ultrasonic level measurement
Published 2013Table of Contents: “…. -- Ultrasonic instrumentation -- The transducer -- Transducer environments -- Transducer accuracy -- Transducer resolution and accuracy -- Impedance matching -- Axis of transmission -- Beam width -- Beam spreading -- Ringdown -- The controllers -- Digital filtering -- Averaging echoes -- Echo extraction algorithms -- Summary -- Notes --…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
663
Principles of GNSS, inertial, and multisensor integrated navigation systems /
Published 2013Table of Contents: “…Machine generated contents note: ch. 1 Introduction -- 1.1.Fundamental Concepts -- 1.2.Dead Reckoning -- 1.3.Position Fixing -- 1.3.1.Position-Fixing Methods -- 1.3.2.Signal-Based Positioning -- 1.3.3.Environmental Feature Matching -- 1.4.The Navigation System -- 1.4.1.Requirements -- 1.4.2.Context -- 1.4.3.Integration -- 1.4.4.Aiding -- 1.4.5.Assistance and Cooperation -- 1.4.6.Fault Detection -- 1.5.Overview of the Book -- References -- ch. 2 Coordinate Frames, Kinematics, and the Earth -- 2.1.Coordinate Frames -- 2.1.1.Earth-Centered Inertial Frame -- 2.1.2.Earth-Centered Earth-Fixed Frame -- 2.1.3.Local Navigation Frame -- 2.1.4.Local Tangent-Plane Frame -- 2.1.5.Body Frame -- 2.1.6.Other Frames -- 2.2.Attitude, Rotation, and Resolving Axes Transformations -- 2.2.1.Euler Attitude -- 2.2.2.Coordinate Transformation Matrix -- 2.2.3.Quaternion Attitude -- 2.2.4.Rotation Vector -- 2.3.Kinematics -- 2.3.1.Angular Rate -- 2.3.2.Cartesian Position -- 2.3.3.Velocity -- 2.3.4.Acceleration -- 2.3.5.Motion with Respect to a Rotating Reference Frame -- 2.4.Earth Surface and Gravity Models -- 2.4.1.The Ellipsoid Model of the Earth's Surface -- 2.4.2.Curvilinear Position -- 2.4.3.Position Conversion -- 2.4.4.The Geoid, Orthometric Height, and Earth Tides -- 2.4.5.Projected Coordinates -- 2.4.6.Earth Rotation -- 2.4.7.Specific Force, Gravitation, and Gravity -- 2.5.Frame Transformations -- 2.5.1.Inertial and Earth Frames -- 2.5.2.Earth and Local Navigation Frames -- 2.5.3.Inertial and Local Navigation Frames -- 2.5.4.Earth and Local Tangent-Plane Frames -- 2.5.5.Transposition of Navigation Solutions -- References -- ch. 3 Kalman Filter-Based Estimation -- 3.1.Introduction -- 3.1.1.Elements of the Kalman Filter -- 3.1.2.Steps of the Kalman Filter -- 3.1.3.Kalman Filter Applications -- 3.2.Algorithms and Models -- 3.2.1.Definitions -- 3.2.2.Kalman Filter Algorithm -- 3.2.3.System Model -- 3.2.4.Measurement Model -- 3.2.5.Kalman Filter Behavior and State Observability -- 3.2.6.Closed-Loop Kalman Filter -- 3.2.7.Sequential Measurement Update -- 3.3.Implementation Issues -- 3.3.1.Tuning and Stability -- 3.3.2.Algorithm Design -- 3.3.3.Numerical Issues -- 3.3.4.Time Synchronization -- 3.3.5.Kalman Filter Design Process -- 3.4.Extensions to the Kalman Filter -- 3.4.1.Extended and Linearized Kalman Filter -- 3.4.2.Unscented Kalman Filter -- 3.4.3.Time-Correlated Noise -- 3.4.4.Adaptive Kalman Filter -- 3.4.5.Multiple-Hypothesis Filtering -- 3.4.6.Kalman Smoothing -- 3.5.The Particle Filter -- References -- ch. 4 Inertial Sensors -- 4.1.Accelerometers -- 4.1.1.Pendulous Accelerometers -- 4.1.2.Vibrating-Beam Accelerometers -- 4.2.Gyroscopes -- 4.2.1.Optical Gyroscopes -- 4.2.2.Vibratory Gyroscopes -- 4.3.Inertial Measurement Units -- 4.4.Error Characteristics -- 4.4.1.Biases -- 4.4.2.Scale Factor and Cross-Coupling Errors -- 4.4.3.Random Noise -- 4.4.4.Further Error Sources -- 4.4.5.Vibration-Induced Errors -- 4.4.6.Error Models -- References -- ch. 5 Inertial Navigation -- 5.1.Introduction to Inertial Navigation -- 5.2.Inertial-Frame Navigation Equations -- 5.2.1.Attitude Update -- 5.2.2.Specific-Force Frame Transformation -- 5.2.3.Velocity Update -- 5.2.4.Position Update -- 5.3.Earth-Frame Navigation Equations -- 5.3.1.Attitude Update -- 5.3.2.Specific-Force Frame Transformation -- 5.3.3.Velocity Update -- 5.3.4.Position Update -- 5.4.Local-Navigation-Frame Navigation Equations -- 5.4.1.Attitude Update -- 5.4.2.Specific-Force Frame Transformation -- 5.4.3.Velocity Update -- 5.4.4.Position Update -- 5.4.5.Wander-Azimuth Implementation -- 5.5.Navigation Equations Optimization -- 5.5.1.Precision Attitude Update -- 5.5.2.Precision Specific-Force Frame Transformation -- 5.5.3.Precision Velocity and Position Updates -- 5.5.4.Effects of Sensor Sampling Interval and Vibration -- 5.5.5.Design Tradeoffs -- 5.6.Initialization and Alignment -- 5.6.1.Position and Velocity Initialization -- 5.6.2.Attitude Initialization -- 5.6.3.Fine Alignment -- 5.7.INS Error Propagation -- 5.7.1.Short-Term Straight-Line Error Propagation -- 5.7.2.Medium- and Long-Term Error Propagation -- 5.7.3.Maneuver-Dependent Errors -- 5.8.Indexed IMU -- 5.9.Partial IMU -- References -- ch. 6 Dead Reckoning, Attitude, and Height Measurement -- 6.1.Attitude Measurement -- 6.1.1.Magnetic Heading -- 6.1.2.Marine Gyrocompass -- 6.1.3.Strapdown Yaw-Axis Gyro -- 6.1.4.Heading from Trajectory -- 6.1.5.Integrated Heading Determination -- 6.1.6.Accelerometer Leveling and Tilt Sensors -- 6.1.7.Horizon Sensing -- 6.1.8.Attitude and Heading Reference System -- 6.2.Height and Depth Measurement -- 6.2.1.Barometric Altimeter -- 6.2.2.Depth Pressure Sensor -- 6.2.3.Radar Altimeter -- 6.3.Odometry -- 6.3.1.Linear Odometry -- 6.3.2.Differential Odometry -- 6.3.3.Integrated Odometry and Partial IMU -- 6.4.Pedestrian Dead Reckoning Using Step Detection -- 6.5.Doppler Radar and Sonar -- 6.6.Other Dead-Reckoning Techniques -- 6.6.1.Correlation-Based Velocity Measurement -- 6.6.2.Air Data -- 6.6.3.Ship's Speed Log -- References -- ch. 7 Principles of Radio Positioning -- 7.1.Radio Positioning Configurations and Methods -- 7.1.1.Self-Positioning and Remote Positioning -- 7.1.2.Relative Positioning -- 7.1.3.Proximity -- 7.1.4.Ranging -- 7.1.5.Angular Positioning -- 7.1.6.Pattern Matching -- 7.1.7.Doppler Positioning -- 7.2.Positioning Signals -- 7.2.1.Modulation Types -- 7.2.2.Radio Spectrum -- 7.3.User Equipment -- 7.3.1.Architecture -- 7.3.2.Signal Timing Measurement -- 7.3.3.Position Determination from Ranging -- 7.4.Propagation, Error Sources, and Positioning Accuracy -- 7.4.1.Ionosphere, Troposphere, and Surface Propagation Effects -- 7.4.2.Attenuation, Reflection, Multipath, and Diffraction -- 7.4.3.Resolution, Noise, and Tracking Errors -- 7.4.4.Transmitter Location and Timing Errors -- 7.4.5.Effect of Signal Geometry -- References -- ch. 8 GNSS: Fundamentals, Signals, and Satellites -- 8.1.Fundamentals of Satellite Navigation -- 8.1.1.GNSS Architecture -- 8.1.2.Signals and Range Measurement -- 8.1.3.Positioning -- 8.1.4.Error Sources and Performance Limitations -- 8.2.The Systems -- 8.2.1.Global Positioning System -- 8.2.2.GLONASS -- 8.2.3.Galileo -- 8.2.4.Beidou -- 8.2.5.Regional Systems -- 8.2.6.Augmentation Systems -- 8.2.7.System Compatibility -- 8.3.GNSS Signals -- 8.3.1.Signal Types -- 8.3.2.Global Positioning System -- 8.3.3.GLONASS -- 8.3.4.Galileo -- 8.3.5.Beidou -- 8.3.6.Regional Systems -- 8.3.7.Augmentation Systems -- 8.4.Navigation Data Messages -- 8.4.1.GPS -- 8.4.2.GLONASS -- 8.4.3.Galileo -- 8.4.4.SBAS -- 8.4.5.Time Base Synchronization -- 8.5.Satellite Orbits and Geometry -- 8.5.1.Satellite Orbits -- 8.5.2.Satellite Position and Velocity -- 8.5.3.Range, Range Rate, and Line of Sight -- 8.5.4.Elevation and Azimuth -- References -- ch. 9 GNSS: User Equipment Processing and Errors -- 9.1.Receiver Hardware and Antenna -- 9.1.1.Antennas -- 9.1.2.Reference Oscillator -- 9.1.3.Receiver Front End -- 9.1.4.Baseband Signal Processor -- 9.2.Ranging Processor -- 9.2.1.Acquisition -- 9.2.2.Code Tracking -- 9.2.3.Carrier Tracking -- 9.2.4.Tracking Lock Detection -- 9.2.5.Navigation-Message Demodulation -- 9.2.6.Carrier-Power-to-Noise-Density Measurement -- 9.2.7.Pseudo-Range, Pseudo-Range-Rate, and Carrier-Phase Measurements -- 9.3.Range Error Sources -- 9.3.1.Ephemeris Prediction and Satellite Clock Errors -- 9.3.2.Ionosphere and Troposphere Propagation Errors -- 9.3.3.Tracking Errors -- 9.3.4.Multipath, Nonline-of-Sight, and Diffraction -- 9.4.Navigation Processor -- 9.4.1.Single-Epoch Navigation Solution -- 9.4.2.Filtered Navigation Solution -- 9.4.3.Signal Geometry and Navigation Solution Accuracy -- 9.4.4.Position Error Budget -- References -- ch.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
664
Principles of GNSS, inertial, and multisensor integrated navigation systems /
Published 2013Table of Contents: “…Machine generated contents note: ch. 1 Introduction -- 1.1.Fundamental Concepts -- 1.2.Dead Reckoning -- 1.3.Position Fixing -- 1.3.1.Position-Fixing Methods -- 1.3.2.Signal-Based Positioning -- 1.3.3.Environmental Feature Matching -- 1.4.The Navigation System -- 1.4.1.Requirements -- 1.4.2.Context -- 1.4.3.Integration -- 1.4.4.Aiding -- 1.4.5.Assistance and Cooperation -- 1.4.6.Fault Detection -- 1.5.Overview of the Book -- References -- ch. 2 Coordinate Frames, Kinematics, and the Earth -- 2.1.Coordinate Frames -- 2.1.1.Earth-Centered Inertial Frame -- 2.1.2.Earth-Centered Earth-Fixed Frame -- 2.1.3.Local Navigation Frame -- 2.1.4.Local Tangent-Plane Frame -- 2.1.5.Body Frame -- 2.1.6.Other Frames -- 2.2.Attitude, Rotation, and Resolving Axes Transformations -- 2.2.1.Euler Attitude -- 2.2.2.Coordinate Transformation Matrix -- 2.2.3.Quaternion Attitude -- 2.2.4.Rotation Vector -- 2.3.Kinematics -- 2.3.1.Angular Rate -- 2.3.2.Cartesian Position -- 2.3.3.Velocity -- 2.3.4.Acceleration -- 2.3.5.Motion with Respect to a Rotating Reference Frame -- 2.4.Earth Surface and Gravity Models -- 2.4.1.The Ellipsoid Model of the Earth's Surface -- 2.4.2.Curvilinear Position -- 2.4.3.Position Conversion -- 2.4.4.The Geoid, Orthometric Height, and Earth Tides -- 2.4.5.Projected Coordinates -- 2.4.6.Earth Rotation -- 2.4.7.Specific Force, Gravitation, and Gravity -- 2.5.Frame Transformations -- 2.5.1.Inertial and Earth Frames -- 2.5.2.Earth and Local Navigation Frames -- 2.5.3.Inertial and Local Navigation Frames -- 2.5.4.Earth and Local Tangent-Plane Frames -- 2.5.5.Transposition of Navigation Solutions -- References -- ch. 3 Kalman Filter-Based Estimation -- 3.1.Introduction -- 3.1.1.Elements of the Kalman Filter -- 3.1.2.Steps of the Kalman Filter -- 3.1.3.Kalman Filter Applications -- 3.2.Algorithms and Models -- 3.2.1.Definitions -- 3.2.2.Kalman Filter Algorithm -- 3.2.3.System Model -- 3.2.4.Measurement Model -- 3.2.5.Kalman Filter Behavior and State Observability -- 3.2.6.Closed-Loop Kalman Filter -- 3.2.7.Sequential Measurement Update -- 3.3.Implementation Issues -- 3.3.1.Tuning and Stability -- 3.3.2.Algorithm Design -- 3.3.3.Numerical Issues -- 3.3.4.Time Synchronization -- 3.3.5.Kalman Filter Design Process -- 3.4.Extensions to the Kalman Filter -- 3.4.1.Extended and Linearized Kalman Filter -- 3.4.2.Unscented Kalman Filter -- 3.4.3.Time-Correlated Noise -- 3.4.4.Adaptive Kalman Filter -- 3.4.5.Multiple-Hypothesis Filtering -- 3.4.6.Kalman Smoothing -- 3.5.The Particle Filter -- References -- ch. 4 Inertial Sensors -- 4.1.Accelerometers -- 4.1.1.Pendulous Accelerometers -- 4.1.2.Vibrating-Beam Accelerometers -- 4.2.Gyroscopes -- 4.2.1.Optical Gyroscopes -- 4.2.2.Vibratory Gyroscopes -- 4.3.Inertial Measurement Units -- 4.4.Error Characteristics -- 4.4.1.Biases -- 4.4.2.Scale Factor and Cross-Coupling Errors -- 4.4.3.Random Noise -- 4.4.4.Further Error Sources -- 4.4.5.Vibration-Induced Errors -- 4.4.6.Error Models -- References -- ch. 5 Inertial Navigation -- 5.1.Introduction to Inertial Navigation -- 5.2.Inertial-Frame Navigation Equations -- 5.2.1.Attitude Update -- 5.2.2.Specific-Force Frame Transformation -- 5.2.3.Velocity Update -- 5.2.4.Position Update -- 5.3.Earth-Frame Navigation Equations -- 5.3.1.Attitude Update -- 5.3.2.Specific-Force Frame Transformation -- 5.3.3.Velocity Update -- 5.3.4.Position Update -- 5.4.Local-Navigation-Frame Navigation Equations -- 5.4.1.Attitude Update -- 5.4.2.Specific-Force Frame Transformation -- 5.4.3.Velocity Update -- 5.4.4.Position Update -- 5.4.5.Wander-Azimuth Implementation -- 5.5.Navigation Equations Optimization -- 5.5.1.Precision Attitude Update -- 5.5.2.Precision Specific-Force Frame Transformation -- 5.5.3.Precision Velocity and Position Updates -- 5.5.4.Effects of Sensor Sampling Interval and Vibration -- 5.5.5.Design Tradeoffs -- 5.6.Initialization and Alignment -- 5.6.1.Position and Velocity Initialization -- 5.6.2.Attitude Initialization -- 5.6.3.Fine Alignment -- 5.7.INS Error Propagation -- 5.7.1.Short-Term Straight-Line Error Propagation -- 5.7.2.Medium- and Long-Term Error Propagation -- 5.7.3.Maneuver-Dependent Errors -- 5.8.Indexed IMU -- 5.9.Partial IMU -- References -- ch. 6 Dead Reckoning, Attitude, and Height Measurement -- 6.1.Attitude Measurement -- 6.1.1.Magnetic Heading -- 6.1.2.Marine Gyrocompass -- 6.1.3.Strapdown Yaw-Axis Gyro -- 6.1.4.Heading from Trajectory -- 6.1.5.Integrated Heading Determination -- 6.1.6.Accelerometer Leveling and Tilt Sensors -- 6.1.7.Horizon Sensing -- 6.1.8.Attitude and Heading Reference System -- 6.2.Height and Depth Measurement -- 6.2.1.Barometric Altimeter -- 6.2.2.Depth Pressure Sensor -- 6.2.3.Radar Altimeter -- 6.3.Odometry -- 6.3.1.Linear Odometry -- 6.3.2.Differential Odometry -- 6.3.3.Integrated Odometry and Partial IMU -- 6.4.Pedestrian Dead Reckoning Using Step Detection -- 6.5.Doppler Radar and Sonar -- 6.6.Other Dead-Reckoning Techniques -- 6.6.1.Correlation-Based Velocity Measurement -- 6.6.2.Air Data -- 6.6.3.Ship's Speed Log -- References -- ch. 7 Principles of Radio Positioning -- 7.1.Radio Positioning Configurations and Methods -- 7.1.1.Self-Positioning and Remote Positioning -- 7.1.2.Relative Positioning -- 7.1.3.Proximity -- 7.1.4.Ranging -- 7.1.5.Angular Positioning -- 7.1.6.Pattern Matching -- 7.1.7.Doppler Positioning -- 7.2.Positioning Signals -- 7.2.1.Modulation Types -- 7.2.2.Radio Spectrum -- 7.3.User Equipment -- 7.3.1.Architecture -- 7.3.2.Signal Timing Measurement -- 7.3.3.Position Determination from Ranging -- 7.4.Propagation, Error Sources, and Positioning Accuracy -- 7.4.1.Ionosphere, Troposphere, and Surface Propagation Effects -- 7.4.2.Attenuation, Reflection, Multipath, and Diffraction -- 7.4.3.Resolution, Noise, and Tracking Errors -- 7.4.4.Transmitter Location and Timing Errors -- 7.4.5.Effect of Signal Geometry -- References -- ch. 8 GNSS: Fundamentals, Signals, and Satellites -- 8.1.Fundamentals of Satellite Navigation -- 8.1.1.GNSS Architecture -- 8.1.2.Signals and Range Measurement -- 8.1.3.Positioning -- 8.1.4.Error Sources and Performance Limitations -- 8.2.The Systems -- 8.2.1.Global Positioning System -- 8.2.2.GLONASS -- 8.2.3.Galileo -- 8.2.4.Beidou -- 8.2.5.Regional Systems -- 8.2.6.Augmentation Systems -- 8.2.7.System Compatibility -- 8.3.GNSS Signals -- 8.3.1.Signal Types -- 8.3.2.Global Positioning System -- 8.3.3.GLONASS -- 8.3.4.Galileo -- 8.3.5.Beidou -- 8.3.6.Regional Systems -- 8.3.7.Augmentation Systems -- 8.4.Navigation Data Messages -- 8.4.1.GPS -- 8.4.2.GLONASS -- 8.4.3.Galileo -- 8.4.4.SBAS -- 8.4.5.Time Base Synchronization -- 8.5.Satellite Orbits and Geometry -- 8.5.1.Satellite Orbits -- 8.5.2.Satellite Position and Velocity -- 8.5.3.Range, Range Rate, and Line of Sight -- 8.5.4.Elevation and Azimuth -- References -- ch. 9 GNSS: User Equipment Processing and Errors -- 9.1.Receiver Hardware and Antenna -- 9.1.1.Antennas -- 9.1.2.Reference Oscillator -- 9.1.3.Receiver Front End -- 9.1.4.Baseband Signal Processor -- 9.2.Ranging Processor -- 9.2.1.Acquisition -- 9.2.2.Code Tracking -- 9.2.3.Carrier Tracking -- 9.2.4.Tracking Lock Detection -- 9.2.5.Navigation-Message Demodulation -- 9.2.6.Carrier-Power-to-Noise-Density Measurement -- 9.2.7.Pseudo-Range, Pseudo-Range-Rate, and Carrier-Phase Measurements -- 9.3.Range Error Sources -- 9.3.1.Ephemeris Prediction and Satellite Clock Errors -- 9.3.2.Ionosphere and Troposphere Propagation Errors -- 9.3.3.Tracking Errors -- 9.3.4.Multipath, Nonline-of-Sight, and Diffraction -- 9.4.Navigation Processor -- 9.4.1.Single-Epoch Navigation Solution -- 9.4.2.Filtered Navigation Solution -- 9.4.3.Signal Geometry and Navigation Solution Accuracy -- 9.4.4.Position Error Budget -- References -- ch.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
665
Statistical disclosure control
Published 2012Table of Contents: “…Machine generated contents note: Preface vii Acknowledgements ix 1 Introduction 1 1.1 Concepts and Definitions 2 1.1.1 Disclosure 2 1.1.2 Statistical disclosure control 2 1.1.3 Tabular data 3 1.1.4 Microdata 3 1.1.5 Risk and utility 4 1.2 An approach to Statistical Disclosure Control 6 1.3 The chapters of the handbook 8 2 Ethics, Principles, Guidelines and Regulations, a general background 9 2.1 Introduction 9 2.2 Ethical codes and the new ISI code 9 2.2.1 ISI Declaration on Professional Ethics 10 2.2.2 New ISI Declaration on Professional Ethics 10 2.2.3 European Statistics Code of Practice 14 2.3 UNECE Principles and guidelines 14 2.4 Laws 17 2.4.1 Committee on Statistical Confidentiality 18 2.4.2 European Statistical System Committee 18 3 Microdata 21 3.1 Introduction 21 3.2 Microdata Concepts 22 3.2.1 Stage 1: Assess need for confidentiality protection 22 3.2.2 Stage 2: Key characteristics and uses of microdata 24 3.2.3 Stage 3: Disclosure risk 27 3.2.4 Stage 4: Protection methods 29 3.2.5 Stage 5: Implementation 30 3.3 Definitions of disclosure 32 3.3.1 Definitions of disclosure scenarios 33 3.4 Definitions of Disclosure Risk 34 3.4.1 Disclosure risk for categorical quasi-identifiers 35 3.4.2 Disclosure risk for continuous quasi-identifiers 37 3.5 Estimating Re-identification Risk 39 3.5.1 Individual risk based on the sample: threshold rule 39 3.5.2 Estimating individual risk using sampling weights 39 3.5.3 Estimating individual risk by Poisson model 42 3.5.4 Further models that borrow information from other sources 43 3.5.5 Estimating per record risk via heuristics 44 3.5.6 Assessing risk via record linkage 45 3.6 Non-Perturbative Microdata Masking 45 3.6.1 Sampling 46 3.6.2 Global recoding 46 3.6.3 Top and bottom coding 47 3.6.4 Local suppression 47 3.7 Perturbative Microdata Masking 48 3.7.1 Additive noise masking 48 3.7.2 Multiplicative noise masking 52 3.7.3 Microaggregation 54 3.7.4 Data swapping and rank swapping 66 3.7.5 Data shuffling 66 3.7.6 Rounding 67 3.7.7 Resampling 67 3.7.8 PRAM 67 3.7.9 MASSC 71 3.8 Synthetic and Hybrid Data 71 3.8.1 Fully synthetic data 72 3.8.2 Partially synthetic data 77 3.8.3 Hybrid data 79 3.8.4 Pros and cons of synthetic and hybrid data 88 3.9 Information Loss in Microdata 91 3.9.1 Information loss measures for continuous data 92 3.9.2 Information loss measures for categorical data 99 3.10 Release of multiple files from the same microdata set 101 3.11 Software 102 3.11.1 _-ARGUS 102 3.11.2 sdcMicro 103 3.11.3 IVEware 106 3.12 Case Studies 106 3.12.1 Microdata files at Statistics Netherlands 106 3.12.2 The European Labour Force Survey Microdata for Research Purposes 108 3.12.3 The European Structure of Earnings Survey Microdata for Research Purposes 111 3.12.4 NHIS Linked Mortality Data Public Use File, USA 117 3.12.5 Other real case instances 119 4 Magnitude tabular data 121 4.1 Introduction 121 4.1.1 Magnitude Tabular Data: Basic Terminology 121 4.1.2 Complex tabular data structures: hierarchical and linked tables 122 4.1.3 Risk Concepts 124 4.1.4 Protection Concepts 127 4.1.5 Information Loss Concepts 127 4.1.6 Implementation: Software, Guidelines and Case Study 127 4.2 Disclosure Risk Assessment I: Primary Sensitive Cells 128 4.2.1 Intruder Scenarios 128 4.2.2 Sensitivity rules 129 4.3 Disclosure Risk Assessment II: Secondary risk assessment 140 4.3.1 Feasibility Interval 141 4.3.2 Protection Level 142 4.3.3 Singleton and multi cell disclosure 143 4.3.4 Risk models for hierarchical and linked tables 144 4.4 Non-Perturbative Protection Methods 145 4.4.1 Global Recoding 145 4.4.2 The Concept of Cell Suppression 145 4.4.3 Algorithms for Secondary Cell Suppression 146 4.4.4 Secondary Cell Suppression in Hierarchical and Linked Tables 149 4.5 Perturbative Protection Methods 151 4.5.1 A pre-tabular method: Multiplicative Noise 152 4.5.2 A Post-tabular Method: Controlled Tabular Adjustment 153 4.6 Information Loss Measures for Tabular Data 153 4.6.1 Cell Costs for Cell Suppression 153 4.6.2 Cell Costs for CTA 154 4.6.3 Information Loss Measures to Evaluate the Outcome of Table Protection 155 4.7 Software for Tabular Data Protection 155 4.7.1 Empirical comparison of cell suppression algorithms 156 4.8 Guidelines: Setting up an efficient table model systematically 160 4.8.1 Defining Spanning Variables 161 4.8.2 Response Variables and Mapping Rules 162 4.9 Case Studies 164 4.9.1 Response Variables and Mapping Rules of the Case Study 164 4.9.2 Spanning Variables of the Case Study 165 4.9.3 Analysing the Tables of the Case Study 165 4.9.4 Software Issues of the Case Study 167 5 Frequency tables 169 5.1 Introduction 169 5.2 Disclosure risks 169 5.3 Methods 176 5.4 Post-tabular methods 178 5.4.1 Cell Suppression 178 5.4.2 ABS Cell Perturbation 179 5.4.3 Rounding 179 5.5 Information loss 184 5.6 Software 186 5.6.1 Introduction 186 5.7 Case Studies 188 5.7.1 UK Census 188 5.7.2 Australian and New Zealand Censuses 190 6 Data Access Issues 193 6.1 Introduction 193 6.2 Research Data Centres 193 6.3 Remote Execution 194 6.4 Remote Access 195 6.5 Licensing 196 6.6 Guidelines on output checking 196 6.6.1 Introduction 196 6.6.2 General approach 197 6.6.3 Rules for output checking 199 6.6.4 Organizational/procedural aspects of output checking 208 6.6.5 Researcher training 215 6.7 Additional issues concerning data access 218 6.7.1 Examples of disclaimers 218 6.7.2 Output description 218 6.8 Case Studies 219 6.8.1 The U.S. …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
666
Statistical disclosure control
Published 2012Table of Contents: “…Machine generated contents note: Preface vii Acknowledgements ix 1 Introduction 1 1.1 Concepts and Definitions 2 1.1.1 Disclosure 2 1.1.2 Statistical disclosure control 2 1.1.3 Tabular data 3 1.1.4 Microdata 3 1.1.5 Risk and utility 4 1.2 An approach to Statistical Disclosure Control 6 1.3 The chapters of the handbook 8 2 Ethics, Principles, Guidelines and Regulations, a general background 9 2.1 Introduction 9 2.2 Ethical codes and the new ISI code 9 2.2.1 ISI Declaration on Professional Ethics 10 2.2.2 New ISI Declaration on Professional Ethics 10 2.2.3 European Statistics Code of Practice 14 2.3 UNECE Principles and guidelines 14 2.4 Laws 17 2.4.1 Committee on Statistical Confidentiality 18 2.4.2 European Statistical System Committee 18 3 Microdata 21 3.1 Introduction 21 3.2 Microdata Concepts 22 3.2.1 Stage 1: Assess need for confidentiality protection 22 3.2.2 Stage 2: Key characteristics and uses of microdata 24 3.2.3 Stage 3: Disclosure risk 27 3.2.4 Stage 4: Protection methods 29 3.2.5 Stage 5: Implementation 30 3.3 Definitions of disclosure 32 3.3.1 Definitions of disclosure scenarios 33 3.4 Definitions of Disclosure Risk 34 3.4.1 Disclosure risk for categorical quasi-identifiers 35 3.4.2 Disclosure risk for continuous quasi-identifiers 37 3.5 Estimating Re-identification Risk 39 3.5.1 Individual risk based on the sample: threshold rule 39 3.5.2 Estimating individual risk using sampling weights 39 3.5.3 Estimating individual risk by Poisson model 42 3.5.4 Further models that borrow information from other sources 43 3.5.5 Estimating per record risk via heuristics 44 3.5.6 Assessing risk via record linkage 45 3.6 Non-Perturbative Microdata Masking 45 3.6.1 Sampling 46 3.6.2 Global recoding 46 3.6.3 Top and bottom coding 47 3.6.4 Local suppression 47 3.7 Perturbative Microdata Masking 48 3.7.1 Additive noise masking 48 3.7.2 Multiplicative noise masking 52 3.7.3 Microaggregation 54 3.7.4 Data swapping and rank swapping 66 3.7.5 Data shuffling 66 3.7.6 Rounding 67 3.7.7 Resampling 67 3.7.8 PRAM 67 3.7.9 MASSC 71 3.8 Synthetic and Hybrid Data 71 3.8.1 Fully synthetic data 72 3.8.2 Partially synthetic data 77 3.8.3 Hybrid data 79 3.8.4 Pros and cons of synthetic and hybrid data 88 3.9 Information Loss in Microdata 91 3.9.1 Information loss measures for continuous data 92 3.9.2 Information loss measures for categorical data 99 3.10 Release of multiple files from the same microdata set 101 3.11 Software 102 3.11.1 _-ARGUS 102 3.11.2 sdcMicro 103 3.11.3 IVEware 106 3.12 Case Studies 106 3.12.1 Microdata files at Statistics Netherlands 106 3.12.2 The European Labour Force Survey Microdata for Research Purposes 108 3.12.3 The European Structure of Earnings Survey Microdata for Research Purposes 111 3.12.4 NHIS Linked Mortality Data Public Use File, USA 117 3.12.5 Other real case instances 119 4 Magnitude tabular data 121 4.1 Introduction 121 4.1.1 Magnitude Tabular Data: Basic Terminology 121 4.1.2 Complex tabular data structures: hierarchical and linked tables 122 4.1.3 Risk Concepts 124 4.1.4 Protection Concepts 127 4.1.5 Information Loss Concepts 127 4.1.6 Implementation: Software, Guidelines and Case Study 127 4.2 Disclosure Risk Assessment I: Primary Sensitive Cells 128 4.2.1 Intruder Scenarios 128 4.2.2 Sensitivity rules 129 4.3 Disclosure Risk Assessment II: Secondary risk assessment 140 4.3.1 Feasibility Interval 141 4.3.2 Protection Level 142 4.3.3 Singleton and multi cell disclosure 143 4.3.4 Risk models for hierarchical and linked tables 144 4.4 Non-Perturbative Protection Methods 145 4.4.1 Global Recoding 145 4.4.2 The Concept of Cell Suppression 145 4.4.3 Algorithms for Secondary Cell Suppression 146 4.4.4 Secondary Cell Suppression in Hierarchical and Linked Tables 149 4.5 Perturbative Protection Methods 151 4.5.1 A pre-tabular method: Multiplicative Noise 152 4.5.2 A Post-tabular Method: Controlled Tabular Adjustment 153 4.6 Information Loss Measures for Tabular Data 153 4.6.1 Cell Costs for Cell Suppression 153 4.6.2 Cell Costs for CTA 154 4.6.3 Information Loss Measures to Evaluate the Outcome of Table Protection 155 4.7 Software for Tabular Data Protection 155 4.7.1 Empirical comparison of cell suppression algorithms 156 4.8 Guidelines: Setting up an efficient table model systematically 160 4.8.1 Defining Spanning Variables 161 4.8.2 Response Variables and Mapping Rules 162 4.9 Case Studies 164 4.9.1 Response Variables and Mapping Rules of the Case Study 164 4.9.2 Spanning Variables of the Case Study 165 4.9.3 Analysing the Tables of the Case Study 165 4.9.4 Software Issues of the Case Study 167 5 Frequency tables 169 5.1 Introduction 169 5.2 Disclosure risks 169 5.3 Methods 176 5.4 Post-tabular methods 178 5.4.1 Cell Suppression 178 5.4.2 ABS Cell Perturbation 179 5.4.3 Rounding 179 5.5 Information loss 184 5.6 Software 186 5.6.1 Introduction 186 5.7 Case Studies 188 5.7.1 UK Census 188 5.7.2 Australian and New Zealand Censuses 190 6 Data Access Issues 193 6.1 Introduction 193 6.2 Research Data Centres 193 6.3 Remote Execution 194 6.4 Remote Access 195 6.5 Licensing 196 6.6 Guidelines on output checking 196 6.6.1 Introduction 196 6.6.2 General approach 197 6.6.3 Rules for output checking 199 6.6.4 Organizational/procedural aspects of output checking 208 6.6.5 Researcher training 215 6.7 Additional issues concerning data access 218 6.7.1 Examples of disclaimers 218 6.7.2 Output description 218 6.8 Case Studies 219 6.8.1 The U.S. …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
667
Efficient Learning Machines Theories, Concepts, and Applications for Engineers and System Designers /
Published 2015Get full text
Electronic eBook -
668
Efficient Learning Machines Theories, Concepts, and Applications for Engineers and System Designers /
Published 2015Get full text
Electronic eBook -
669
Iterative methods in combinatorial optimization
Published 2011An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
670
Collecting Lives : Critical Data Narrative as Modernist Aesthetic in Early Twentieth-Century U.S. Literatures /
Published 2022Full text available:
Electronic eBook -
671
Iterative methods in combinatorial optimization
Published 2011An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
672
Collecting Lives : Critical Data Narrative as Modernist Aesthetic in Early Twentieth-Century U.S. Literatures /
Published 2022Full text available:
Electronic eBook -
673
An introduction to computational fluid mechanics by example
Published 2011An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
674
An introduction to computational fluid mechanics by example
Published 2011An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
675
-
676
-
677
Aerospace sensors
Published 2013Table of Contents: “…Principles and examples of sensor integration -- 9.1 Sensor systems -- 9.1.1 The sensor system concept -- 9.1.2 Joint processing of readings from identical sensors -- 9.1.3 Joint processing of readings from cognate sensors with different measurement ranges -- 9.1.4 Joint processing of diverse sensors readings -- 9.1.5 Linear and nonlinear sensor integration algorithms -- 9.2 Fundamentals of integrated measuring system synthesis -- 9.2.1 Synthesis problem statement -- 9.2.2 Classes of dynamic system realization -- 9.2.3 Measurement accuracy indices -- 9.2.4 Excitation properties -- 9.2.5 Objective functions for robust system optimisation -- 9.2.6 Methods of dynamic system accuracy index analysis under excitation with given numerical characteristics of derivatives -- 9.2.6.1 Estimation of error variance -- 9.2.6.2 Example of error variance analysis -- 9.2.6.3 Use of equivalent harmonic excitation -- 9.2.6.4 Estimation of error maximal value -- 9.2.7 System optimization under maximum accuracy criteria -- 9.2.8 Procedures for the dimensional reduction of a measuring system -- 9.2.8.1 Determination of an optimal set of sensors -- 9.2.8.2 Analysis of the advantages of invariant system construction -- 9.2.8.3 Advantages of the zeroing of several system parameters -- 9.2.9 Realization and simulation of integration algorithms -- 9.3 Examples of two-component integrated navigation systems -- 9.3.1 Noninvariant robust integrated speed meter -- 9.3.2 Integrated radio-inertial measurement -- 9.3.3 Airborne gravimeter integration -- 9.3.4 The orbital verticant -- References --…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
678
Aerospace sensors
Published 2013Table of Contents: “…Principles and examples of sensor integration -- 9.1 Sensor systems -- 9.1.1 The sensor system concept -- 9.1.2 Joint processing of readings from identical sensors -- 9.1.3 Joint processing of readings from cognate sensors with different measurement ranges -- 9.1.4 Joint processing of diverse sensors readings -- 9.1.5 Linear and nonlinear sensor integration algorithms -- 9.2 Fundamentals of integrated measuring system synthesis -- 9.2.1 Synthesis problem statement -- 9.2.2 Classes of dynamic system realization -- 9.2.3 Measurement accuracy indices -- 9.2.4 Excitation properties -- 9.2.5 Objective functions for robust system optimisation -- 9.2.6 Methods of dynamic system accuracy index analysis under excitation with given numerical characteristics of derivatives -- 9.2.6.1 Estimation of error variance -- 9.2.6.2 Example of error variance analysis -- 9.2.6.3 Use of equivalent harmonic excitation -- 9.2.6.4 Estimation of error maximal value -- 9.2.7 System optimization under maximum accuracy criteria -- 9.2.8 Procedures for the dimensional reduction of a measuring system -- 9.2.8.1 Determination of an optimal set of sensors -- 9.2.8.2 Analysis of the advantages of invariant system construction -- 9.2.8.3 Advantages of the zeroing of several system parameters -- 9.2.9 Realization and simulation of integration algorithms -- 9.3 Examples of two-component integrated navigation systems -- 9.3.1 Noninvariant robust integrated speed meter -- 9.3.2 Integrated radio-inertial measurement -- 9.3.3 Airborne gravimeter integration -- 9.3.4 The orbital verticant -- References --…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
679
-
680