Search Results - "Prospecting"
Suggested Topics within your search.
Suggested Topics within your search.
- History 137
- Politics and government 107
- Education 104
- Economic conditions 60
- Social aspects 53
- Economic policy 52
- Democracy 44
- Economic aspects 44
- Prospecting 42
- Globalization 38
- Philosophy 36
- Professional & Vocational Education 36
- Social conditions 36
- Sustainable development 36
- Government policy 34
- Political aspects 30
- Environmental aspects 28
- Foreign relations 28
- Petroleum 26
- Economic development 24
- Economics 24
- General 24
- Research 24
- Law and legislation 22
- Religious aspects 22
- Social sciences 22
- Study and teaching 21
- Education, Higher 20
- Moral and ethical aspects 20
- Education (general) 18
-
1381
Spin-crossover materials properties and applications /
Published 2013Table of Contents: “…Naik 16.1 Introduction 425 16.2 Experimental Aspects 426 16.3 Selected Investigations 429 16.4 Conclusions and Prospects 439 17 Theoretical Prediction of Spin-Crossover at the Molecular Level 443 Robert J. …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
1382
Fatigue of materials and structures application to design and damage /
Published 2011Table of Contents: “…Superposition" method -- 3.4.5.Superposition method: applicable examples -- 3.4.6.Numerical application exercise -- 3.5.Performing some "damage tolerance" calculations -- 3.5.1.Complementarity of fatigue and damage tolerance -- 3.5.2.Safety coefficients to understand curve a = f(N) -- 3.5.3.Acquisition of the material parameters -- 3.5.4.Negative parameter: corrosion -- "corrosion fatigue" -- 3.6.Application to the residual strength of thin sheets -- 3.6.1.Planar panels: Feddersen diagram -- 3.6.2.Case of stiffened panels -- 3.7.Propagation of cracks subjected to random loading in the aeronautic industry -- 3.7.1.Modeling of the interactions of loading cycles -- 3.7.2.Comparison of predictions with experimental results -- 3.7.3.Rainflow treatment of random loadings -- 3.8.Conclusion -- 3.8.1.Organization of the evolution of "damage tolerance" -- 3.8.2.Structural maintenance program -- 3.8.3.Inspection of structures being used -- 3.9.Damage tolerance within the gigacyclic domain -- 3.9.1.Observations on crack propagation -- 3.9.2.Propagation of a fish-eye with regards to damage tolerance -- 3.9.3.Example of a turbine disk subjected to vibration -- 3.10.Bibliography -- ch. 4 Defect Influence on the Fatigue Behavior of Metallic Materials / Gilles Baudry -- 4.1.Introduction -- 4.2.Some facts -- 4.2.1.Failure observation -- 4.2.2.Endurance limit level -- 4.2.3.Influence of the rolling reduction ratio and the effect of rolling direction -- 4.2.4.Low cycle fatigue: SN curves -- 4.2.5.Wohler curve: existence of an endurance limit -- 4.2.6.Summary -- 4.3.Approaches -- 4.3.1.First models -- 4.3.2.Kitagawa diagram -- 4.3.3.Murakami model -- 4.4.A few examples -- 4.4.1.Medium-loaded components: example of as-forged parts: connecting rods -- effect of the forging skin -- 4.4.2.High-loaded components: relative importance of cleanliness and surface state -- example of the valve spring -- 4.4.3.High-loaded components: Bearings-Endurance cleanliness relationship -- 4.5.Prospects -- 4.5.1.Estimation of lifetimes and their dispersions -- 4.5.2.Fiber orientation -- 4.5.3.Prestressing -- 4.5.4.Corrosion -- 4.5.5.Complex loadings: spectra/over-loadings/multiaxial loadings -- 4.5.6.Gigacycle fatigue -- 4.6.Conclusion -- 4.7.Bibliography -- ch. 5 Fretting Fatigue: Modeling and Applications / Trevor Lindley -- 5.1.Introduction -- 5.2.Experimental methods -- 5.2.1.Fatigue specimens and contact pads -- 5.2.2.Fatigue S-N data with and without fretting -- 5.2.3.Frictional force measurement -- 5.2.4.Metallography and fractography -- 5.2.5.Mechanisms in fretting fatigue -- 5.3.Fretting fatigue analysis -- 5.3.1.The S-N approach -- 5.3.2.Fretting modeling -- 5.3.3.Two-body contact -- 5.3.4.Fatigue crack initiation -- 5.3.5.Analysis of cracks: the fracture mechanics approach -- 5.3.6.Propagation -- 5.4.Applications under fretting conditions -- 5.4.1.Metallic material: partial slip regime -- 5.4.2.Epoxy polymers: development of cracks under a total slip regime -- 5.5.Palliatives to combat fretting fatigue -- 5.6.Conclusions -- 5.7.Bibliography -- ch. 6 Contact Fatigue / Ky Dang Van -- 6.1.Introduction -- 6.2.Classification of the main types of contact damage -- 6.2.1.Background -- 6.2.2.Damage induced by rolling contacts with or without sliding effect -- 6.2.3.Fretting -- 6.3.A few results on contact mechanics -- 6.3.1.Hertz solution -- 6.3.2.Case of contact with friction under total sliding conditions -- 6.3.3.Case of contact with partial sliding -- 6.3.4.Elastic contact between two solids of different elastic modules -- 6.3.5.3D elastic contact -- 6.4.Elastic limit -- 6.5.Elastoplastic contact -- 6.5.1.Stationary methods -- 6.5.2.Direct cyclic method -- 6.6.Application to modeling of a few contact fatigue issues -- 6.6.1.General methodology -- 6.6.2.Initiation of fatigue cracks in rails -- 6.6.3.Propagation of initiated cracks -- 6.6.4.Application to fretting fatigue -- 6.7.Conclusion -- 6.8.Bibliography -- ch. 7 Thermal Fatigue / Luc Remy -- 7.1.Introduction -- 7.2.Characterization tests -- 7.2.1.Cyclic mechanical behavior -- 7.2.2.Damage -- 7.3.Constitutive and damage models at variable temperatures -- 7.3.1.Constitutive laws -- 7.3.2.Damage process modeling based on fatigue conditions -- 7.3.3.Modeling the damage process in complex cases: towards considering interactions with creep and oxidation phenomena -- 7.4.Applications -- 7.4.1.Exhaust manifolds in automotive industry -- 7.4.2.Cylinder heads made from aluminum alloys in the automotive industry -- 7.4.3.Brake disks in the rail and automotive industries -- 7.4.4.Nuclear industry pipes -- 7.4.5.Simple structures simulating turbine blades -- 7.5.Conclusion -- 7.6.Bibliography.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
1383
Spin-crossover materials properties and applications /
Published 2013Table of Contents: “…Naik 16.1 Introduction 425 16.2 Experimental Aspects 426 16.3 Selected Investigations 429 16.4 Conclusions and Prospects 439 17 Theoretical Prediction of Spin-Crossover at the Molecular Level 443 Robert J. …”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
1384
Fatigue of materials and structures application to design and damage /
Published 2011Table of Contents: “…Superposition" method -- 3.4.5.Superposition method: applicable examples -- 3.4.6.Numerical application exercise -- 3.5.Performing some "damage tolerance" calculations -- 3.5.1.Complementarity of fatigue and damage tolerance -- 3.5.2.Safety coefficients to understand curve a = f(N) -- 3.5.3.Acquisition of the material parameters -- 3.5.4.Negative parameter: corrosion -- "corrosion fatigue" -- 3.6.Application to the residual strength of thin sheets -- 3.6.1.Planar panels: Feddersen diagram -- 3.6.2.Case of stiffened panels -- 3.7.Propagation of cracks subjected to random loading in the aeronautic industry -- 3.7.1.Modeling of the interactions of loading cycles -- 3.7.2.Comparison of predictions with experimental results -- 3.7.3.Rainflow treatment of random loadings -- 3.8.Conclusion -- 3.8.1.Organization of the evolution of "damage tolerance" -- 3.8.2.Structural maintenance program -- 3.8.3.Inspection of structures being used -- 3.9.Damage tolerance within the gigacyclic domain -- 3.9.1.Observations on crack propagation -- 3.9.2.Propagation of a fish-eye with regards to damage tolerance -- 3.9.3.Example of a turbine disk subjected to vibration -- 3.10.Bibliography -- ch. 4 Defect Influence on the Fatigue Behavior of Metallic Materials / Gilles Baudry -- 4.1.Introduction -- 4.2.Some facts -- 4.2.1.Failure observation -- 4.2.2.Endurance limit level -- 4.2.3.Influence of the rolling reduction ratio and the effect of rolling direction -- 4.2.4.Low cycle fatigue: SN curves -- 4.2.5.Wohler curve: existence of an endurance limit -- 4.2.6.Summary -- 4.3.Approaches -- 4.3.1.First models -- 4.3.2.Kitagawa diagram -- 4.3.3.Murakami model -- 4.4.A few examples -- 4.4.1.Medium-loaded components: example of as-forged parts: connecting rods -- effect of the forging skin -- 4.4.2.High-loaded components: relative importance of cleanliness and surface state -- example of the valve spring -- 4.4.3.High-loaded components: Bearings-Endurance cleanliness relationship -- 4.5.Prospects -- 4.5.1.Estimation of lifetimes and their dispersions -- 4.5.2.Fiber orientation -- 4.5.3.Prestressing -- 4.5.4.Corrosion -- 4.5.5.Complex loadings: spectra/over-loadings/multiaxial loadings -- 4.5.6.Gigacycle fatigue -- 4.6.Conclusion -- 4.7.Bibliography -- ch. 5 Fretting Fatigue: Modeling and Applications / Trevor Lindley -- 5.1.Introduction -- 5.2.Experimental methods -- 5.2.1.Fatigue specimens and contact pads -- 5.2.2.Fatigue S-N data with and without fretting -- 5.2.3.Frictional force measurement -- 5.2.4.Metallography and fractography -- 5.2.5.Mechanisms in fretting fatigue -- 5.3.Fretting fatigue analysis -- 5.3.1.The S-N approach -- 5.3.2.Fretting modeling -- 5.3.3.Two-body contact -- 5.3.4.Fatigue crack initiation -- 5.3.5.Analysis of cracks: the fracture mechanics approach -- 5.3.6.Propagation -- 5.4.Applications under fretting conditions -- 5.4.1.Metallic material: partial slip regime -- 5.4.2.Epoxy polymers: development of cracks under a total slip regime -- 5.5.Palliatives to combat fretting fatigue -- 5.6.Conclusions -- 5.7.Bibliography -- ch. 6 Contact Fatigue / Ky Dang Van -- 6.1.Introduction -- 6.2.Classification of the main types of contact damage -- 6.2.1.Background -- 6.2.2.Damage induced by rolling contacts with or without sliding effect -- 6.2.3.Fretting -- 6.3.A few results on contact mechanics -- 6.3.1.Hertz solution -- 6.3.2.Case of contact with friction under total sliding conditions -- 6.3.3.Case of contact with partial sliding -- 6.3.4.Elastic contact between two solids of different elastic modules -- 6.3.5.3D elastic contact -- 6.4.Elastic limit -- 6.5.Elastoplastic contact -- 6.5.1.Stationary methods -- 6.5.2.Direct cyclic method -- 6.6.Application to modeling of a few contact fatigue issues -- 6.6.1.General methodology -- 6.6.2.Initiation of fatigue cracks in rails -- 6.6.3.Propagation of initiated cracks -- 6.6.4.Application to fretting fatigue -- 6.7.Conclusion -- 6.8.Bibliography -- ch. 7 Thermal Fatigue / Luc Remy -- 7.1.Introduction -- 7.2.Characterization tests -- 7.2.1.Cyclic mechanical behavior -- 7.2.2.Damage -- 7.3.Constitutive and damage models at variable temperatures -- 7.3.1.Constitutive laws -- 7.3.2.Damage process modeling based on fatigue conditions -- 7.3.3.Modeling the damage process in complex cases: towards considering interactions with creep and oxidation phenomena -- 7.4.Applications -- 7.4.1.Exhaust manifolds in automotive industry -- 7.4.2.Cylinder heads made from aluminum alloys in the automotive industry -- 7.4.3.Brake disks in the rail and automotive industries -- 7.4.4.Nuclear industry pipes -- 7.4.5.Simple structures simulating turbine blades -- 7.5.Conclusion -- 7.6.Bibliography.…”
An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
1385
-
1386
-
1387
-
1388
-
1389
-
1390
-
1391
-
1392
-
1393
-
1394
-
1395
A step from death a memoir /
Published 2008An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
1396
Sub-Saharan Africa financial sector challenges /
Published 2006An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
1397
-
1398
A step from death a memoir /
Published 2008An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
1399
Sub-Saharan Africa financial sector challenges /
Published 2006An electronic book accessible through the World Wide Web; click to view
Electronic eBook -
1400