Showing 1 - 2 results of 2 for search '"Painting"', query time: 0.02s Refine Results
  1. 1

    Chemistry and technology of emulsion polymerisation

    Published 2013
    Table of Contents: “…Schade 9.1 Introduction 213 9.2 Particle Size and Particle Size Distribution 214 9.2.1 Introduction 214 9.2.2 Average Particle Diameter 216 9.2.3 Particle Size Distribution 216 9.3 Sampling 216 9.4 Particle Size Measurement Methods 217 9.4.1 Ensemble Techniques 218 9.4.2 Particle Separation Methods 224 9.5 Comparison of Methods 233 9.5.1 Choice of a Method 235 9.6 Particle Shape, Structure and Surface Characterisation 236 9.6.1 Introduction to Particle Shape, Structure and Surface Characterisation 236 9.6.2 Classification of the Samples 238 9.6.3 General Considerations - Sample Preparation If the Latex is Film Forming 238 9.7 Discussion of the Available Techniques 239 9.7.1 Optical Microscopy (OM) 239 9.7.2 Atomic Force Microscopy (AFM) 240 9.7.3 Electron Microscopy 243 9.7.4 Indirect Analysis of Particle Morphology 248 9.7.5 Surface Characterisation 249 9.7.6 Cleaning of Latexes 250 9.7.7 Analyses of Particle Charge 250 9.7.8 Additional Techniques Used for Latex Particle Surface Characterisation 250 9.7.9 Zeta Potential 251 10 Large Volume Applications of Latex Polymers 253 Dieter Urban, Bernhard Schuler, and J¨urgen Schmidt-Th¨ummes 10.1 Market and Manufacturing Process 253 10.1.1 History and Market Today 253 10.1.2 Manufacturing Process 254 10.2 Paper and Paperboard 254 10.2.1 The Paper Manufacturing Process 254 10.2.2 Surface Sizing 255 10.2.3 Paper Coating 256 10.3 Paints and Coatings 262 10.3.1 Technology Trends 263 10.3.2 Raw Materials for Water-Borne Coating Formulations 264 10.3.3 Decorative Coatings 269 10.3.4 Protective and Industrial Coatings 271 10.4 Adhesives 271 10.4.1 Design of Emulsion Polymer Adhesives 272 10.4.2 Formulation Additives 276 10.4.3 Adhesive Applications 277 10.4.4 Adhesive Test Methods 279 10.5 Carpet Backing 280 10.5.1 Carpet Backing Binders 281 10.5.2 Carpet Backing Compounds 281 10.5.3 Application Requirements 282 Acknowledgements 282 11 Specialty Applications of Latex Polymers 283 Christian Pichot, Thierry Delair, and Haruma Kawaguchi 11.1 Introduction 283 11.2 Specific Requirements for the Design of Specialty Latex Particles 284 11.2.1 Nature of the Polymer 284 11.2.2 Particle Size and Size Distribution 285 11.2.3 Particle Morphology 285 11.2.4 Nature of the Interface 286 11.2.5 Surface Potential 287 11.2.6 Colloidal Stability 287 11.2.7 Functionality 287 11.3 Preparation Methods of Latex Particles for Specialty Applications 288 11.3.1 Radical-Initiated Polymerisation in Heterogeneous Media 288 11.3.2 Modification of Particles and Related Methods 290 11.3.3 Formulation of Colloidal Dispersions from Pre-Formed Polymers 293 11.4 Applications 294 11.4.1 Non-Biomedical Applications 294 11.4.2 Biological, Biomedical and Pharmaceutical Applications 299 11.5 Conclusions 304 References 307 Index 337.…”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook
  2. 2

    Chemistry and technology of emulsion polymerisation

    Published 2013
    Table of Contents: “…Schade 9.1 Introduction 213 9.2 Particle Size and Particle Size Distribution 214 9.2.1 Introduction 214 9.2.2 Average Particle Diameter 216 9.2.3 Particle Size Distribution 216 9.3 Sampling 216 9.4 Particle Size Measurement Methods 217 9.4.1 Ensemble Techniques 218 9.4.2 Particle Separation Methods 224 9.5 Comparison of Methods 233 9.5.1 Choice of a Method 235 9.6 Particle Shape, Structure and Surface Characterisation 236 9.6.1 Introduction to Particle Shape, Structure and Surface Characterisation 236 9.6.2 Classification of the Samples 238 9.6.3 General Considerations - Sample Preparation If the Latex is Film Forming 238 9.7 Discussion of the Available Techniques 239 9.7.1 Optical Microscopy (OM) 239 9.7.2 Atomic Force Microscopy (AFM) 240 9.7.3 Electron Microscopy 243 9.7.4 Indirect Analysis of Particle Morphology 248 9.7.5 Surface Characterisation 249 9.7.6 Cleaning of Latexes 250 9.7.7 Analyses of Particle Charge 250 9.7.8 Additional Techniques Used for Latex Particle Surface Characterisation 250 9.7.9 Zeta Potential 251 10 Large Volume Applications of Latex Polymers 253 Dieter Urban, Bernhard Schuler, and J¨urgen Schmidt-Th¨ummes 10.1 Market and Manufacturing Process 253 10.1.1 History and Market Today 253 10.1.2 Manufacturing Process 254 10.2 Paper and Paperboard 254 10.2.1 The Paper Manufacturing Process 254 10.2.2 Surface Sizing 255 10.2.3 Paper Coating 256 10.3 Paints and Coatings 262 10.3.1 Technology Trends 263 10.3.2 Raw Materials for Water-Borne Coating Formulations 264 10.3.3 Decorative Coatings 269 10.3.4 Protective and Industrial Coatings 271 10.4 Adhesives 271 10.4.1 Design of Emulsion Polymer Adhesives 272 10.4.2 Formulation Additives 276 10.4.3 Adhesive Applications 277 10.4.4 Adhesive Test Methods 279 10.5 Carpet Backing 280 10.5.1 Carpet Backing Binders 281 10.5.2 Carpet Backing Compounds 281 10.5.3 Application Requirements 282 Acknowledgements 282 11 Specialty Applications of Latex Polymers 283 Christian Pichot, Thierry Delair, and Haruma Kawaguchi 11.1 Introduction 283 11.2 Specific Requirements for the Design of Specialty Latex Particles 284 11.2.1 Nature of the Polymer 284 11.2.2 Particle Size and Size Distribution 285 11.2.3 Particle Morphology 285 11.2.4 Nature of the Interface 286 11.2.5 Surface Potential 287 11.2.6 Colloidal Stability 287 11.2.7 Functionality 287 11.3 Preparation Methods of Latex Particles for Specialty Applications 288 11.3.1 Radical-Initiated Polymerisation in Heterogeneous Media 288 11.3.2 Modification of Particles and Related Methods 290 11.3.3 Formulation of Colloidal Dispersions from Pre-Formed Polymers 293 11.4 Applications 294 11.4.1 Non-Biomedical Applications 294 11.4.2 Biological, Biomedical and Pharmaceutical Applications 299 11.5 Conclusions 304 References 307 Index 337.…”
    An electronic book accessible through the World Wide Web; click to view
    Electronic eBook