Reinforcement Learning : An Introduction /

I tiakina i:
Ngā taipitopito rārangi puna kōrero
Kaituhi matua: Sutton, Richard S.
Ētahi atu kaituhi: Barto, Andrew G.
Hōputu: Tāhiko īPukapuka
Reo:Ingarihi
I whakaputaina: Cambridge, Mass. : MIT Press, 1998.
Rangatū:Book collections on Project MUSE.
Ngā marau:
Urunga tuihono:Full text available:
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
Rārangi ihirangi:
  • Contents
  • Series Foreword
  • Preface
  • I. The Problem
  • 1. Introduction
  • 2. Evaluative Feedback
  • 3. The Reinforcement Learning Problem
  • II. Elementary Solution Methods
  • 4. Dynamic Programming
  • 5. Monte Carlo Methods
  • 6. Temporal-Difference Learning
  • III. A Unified View
  • 7. Eligibility Traces
  • 8. Generalization and Function Approximation
  • 9. Planning and Learning
  • 10. Dimensions of Reinforcement Learning
  • 11. Case Studies
  • References
  • Summary of Notation
  • Index.