Tuning and control loop performance /
Shranjeno v:
| Glavni avtor: | |
|---|---|
| Format: | Elektronski eKnjiga |
| Jezik: | angleščina |
| Izdano: |
New York, [New York] (222 East 46th Street, New York, NY 10017) :
Momentum Press,
2015.
|
| Izdaja: | Fourth edition. |
| Serija: | Manufacturing and engineering collection.
|
| Teme: | |
| Online dostop: | An electronic book accessible through the World Wide Web; click to view |
| Oznake: |
Brez oznak, prvi označite!
|
Kazalo:
- 1. Fundamentals
- 1.1 Introduction
- 1.1.1 Perspective
- 1.1.2 Overview
- 1.1.3 Recommendations
- 1.2 PID controller
- 1.2.1 Proportional mode
- 1.2.2 Integral mode
- 1.2.3 Derivative mode
- 1.2.4 ARW and output limits
- 1.2.5 Control action and valve action
- 1.2.6 Operating modes
- 1.3 Loop dynamics
- 1.3.1 Types of process responses
- 1.3.2 Dead times and time constants
- 1.3.3 Open loop self-regulating and integrating process gains
- 1.3.4 Deadband, resolution, and threshold sensitivity
- 1.4 Typical mode settings
- 1.5 Typical tuning methods
- 1.5.1 Lambda tuning for self-regulating processes
- 1.5.2 Lambda tuning for integrating processes
- 1.5.3 IMC tuning for self-regulating processes
- 1.5.4 IMC tuning for integrating processes
- 1.5.5 Skogestad internal model control tuning for self-regulating processes
- 1.5.6 SIMC tuning for integrating processes
- 1.5.7 Traditional open loop tuning
- 1.5.8 Modified Ziegler-Nichols reaction curve tuning
- 1.5.9 Modified Ziegler-Nichols ultimate oscillation tuning
- 1.5.10 Quarter amplitude oscillation tuning
- 1.5.11 SCM tuning for self-regulating processes
- 1.5.12 SCM tuning for integrating processes
- 1.5.13 SCM tuning for runaway processes
- 1.5.14 Maximizing absorption of variability tuning for surge tank level
- 1.6 Test results
- 1.6.1 Performance of tuning settings on dead time dominant processes
- 1.6.2 Performance of tuning settings on near-integrating processes
- 1.6.3 Performance of tuning settings on true integrating processes
- 1.6.4 Performance of tuning settings on runaway processes
- 1.6.5 Slow oscillations from low PID gain in integrating and runaway processes
- 1.6.6 Performance of tuning methods on various processes
- Key points
- 2. Unified methodology
- 2.1 Introduction
- 2.1.1 Perspective
- 2.1.2 Overview
- 2.1.3 Recommendations
- 2.2 PID features
- 2.2.1 PID form
- 2.2.2 External reset feedback
- 2.2.3 PID structure
- 2.2.4 Split range
- 2.2.5 Signal characterization
- 2.2.6 Feedforward
- 2.2.7 Decoupling
- 2.2.8 Output tracking and remote output
- 2.2.9 Setpoint filter, lead-lag, and rate limits
- 2.2.10 Enhanced PID for wireless and analyzers
- 2.3 Automation system difficulties
- 2.3.1 Open loop gain problems
- 2.3.2 Time constant problems
- 2.3.3 Dead time problems
- 2.3.4 Limit cycle problems
- 2.3.5 Noise problems
- 2.3.6 Accuracy and precision problems
- 2.4 Process objectives
- 2.4.1 Maximize turndown
- 2.4.2 Maximize safety and environmental protection
- 2.4.3 Minimize product variability
- 2.4.4 Maximize process efficiency and capacity
- 2.5 Step-by-step solutions
- 2.6 Test results
- Key points
- 3. Performance criteria
- 3.1 Introduction
- 3.1.1 Perspective
- 3.1.2 Overview
- 3.1.3 Recommendations
- 3.2 Disturbance response metrics
- 3.2.1 Accumulated error
- 3.2.2 Peak error
- 3.2.3 Disturbance lag
- 3.3 Setpoint response metrics
- 3.3.1 Rise time
- 3.3.2 Overshoot and undershoot
- Key points
- 4. Effect of process dynamics
- 4.1 Introduction
- 4.1.1 Perspective
- 4.1.2 Overview
- 4.1.3 Recommendations
- 4.2 Effect of mechanical design
- 4.2.1 Equipment and piping dynamics
- 4.2.2 Common equipment and piping design mistakes
- 4.3 Estimation of total dead time
- 4.4 Estimation of open loop gain
- 4.5 Major types of process responses
- 4.5.1 Self-regulating processes
- 4.5.2 Integrating processes
- 4.5.3 Runaway processes
- 4.6 Examples
- 4.6.1 Waste treatment pH loops (self-regulating process)
- 4.6.2 Boiler feedwater flow loop (self-regulating process)
- 4.6.3 Boiler drum level loop (integrating process)
- 4.6.4 Furnace pressure loop (near-integrating process)
- 4.6.5 Exothermic reactor cascade temperature loop (runaway process)
- 4.6.6 Biological reactor biomass concentration loop (runaway process)
- Key points
- 5. Effect of controller dynamics
- 5.1 Introduction
- 5.1.1 Perspective
- 5.1.2 Overview
- 5.1.3 Recommendations
- 5.2 Execution rate and filter time
- 5.2.1 First effect via equation for integrated error
- 5.2.2 Second effect via equations for implied dead time
- 5.3 Smart reset action
- 5.4 Diagnosis of tuning problems
- 5.5 Furnace pressure loop example (near-integrating)
- 5.6 Test results
- Key points
- 6. Effect of measurement dynamics
- 6.1 Introduction
- 6.1.1 Perspective
- 6.1.2 Overview
- 6.1.3 Recommendations
- 6.2 Wireless update rate and transmitter damping
- 6.2.1 First effect via equation for integrated error
- 6.2.2 Second effect via equations for implied dead time
- 6.3 Analyzers
- 6.4 Sensor lags and delays
- 6.5 Noise and repeatability
- 6.6 Threshold sensitivity and resolution limits
- 6.7 Rangeability (turndown)
- 6.8 Runaway processes
- 6.9 Accuracy, precision, and drift
- 6.10 Attenuation and deception
- 6.11 Examples
- 6.11.1 Waste treatment pH loop (self-regulating process)
- 6.11.2 Boiler feedwater flow loop (self-regulating process)
- 6.11.3 Boiler drum level loop (integrating process)
- 6.11.4 Furnace pressure loop (near-integrating process)
- 6.11.5 Exothermic reactor cascade temperature loop (runaway process)
- 6.11.6 Biological reactor biomass concentration loop (runaway process)
- 6.12 Test results
- Key points
- 7. Effect of valve and variable frequency drive dynamics
- 7.1 Introduction
- 7.1.1 Perspective
- 7.1.2 Overview
- 7.1.3 Recommendations
- 7.2 Valve positioners and accessories
- 7.2.1 Pneumatic positioners
- 7.2.2 Digital positioners
- 7.2.3 Current to pneumatic (I/P) transducers
- 7.2.4 Solenoid valves
- 7.2.5 Volume boosters
- 7.3 Actuators, shafts, and stems
- 7.3.1 Diaphragm actuators
- 7.3.2 Piston actuators
- 7.3.3 Linkages and connections
- 7.4 VFD system design
- 7.4.1 Pulse width modulation
- 7.4.2 Cable problems
- 7.4.3 Bearing problems
- 7.4.4 Speed slip
- 7.4.5 Motor requirements
- 7.4.6 Drive controls
- 7.5 Dynamic response
- 7.5.1 Control valve response
- 7.5.2 VFD response
- 7.5.3 Dead time approximation
- 7.5.4 Deadband and resolution
- 7.5.5 When is a valve or VFD too slow?
- 7.5.6 Limit cycles
- 7.6 Installed flow characteristics and rangeability
- 7.6.1 Valve flow characteristics
- 7.6.2 Valve rangeability
- 7.6.3 VFD flow characteristics
- 7.6.4 VFD rangeability
- 7.7 Best practices
- 7.7.1 Control valve design specifications
- 7.7.2 VFD design specifications
- 7.8 Test results
- Key points
- 8. Effect of disturbances
- 8.1 Introduction
- 8.1.1 Perspective
- 8.1.2 Overview
- 8.1.3 Recommendations
- 8.2 Disturbance dynamics
- 8.2.1 Load time constants
- 8.2.2 Load rate limit
- 8.2.3 Disturbance dead time
- 8.2.4 Disturbance oscillations
- 8.3 Disturbance location
- 8.4 Disturbance troubleshooting
- 8.4.1 Sources of fast oscillations
- 8.4.2 Sources of slow oscillations
- 8.5 Disturbance mitigation
- 8.6 Test results
- Key points
- 9. Effect of nonlinearities
- 9.1 Introduction
- 9.1.1 Perspective
- 9.1.2 Overview
- 9.1.3 Recommendations
- 9.2 Variable gain
- 9.2.1 Cascade control
- 9.2.2 Reversals of process sign
- 9.2.3 Signal characterization
- 9.2.4 Gain scheduling
- 9.2.5 Adaptive control
- 9.2.6 Gain margin
- 9.3 Variable dead time
- 9.4 Variable time constant
- 9.5 Inverse response
- 9.6 Test results
- Key points
- 10. Effect of interactions
- 10.1 Introduction
- 10.1.1 Perspective
- 10.1.2 Overview
- 10.1.3 Recommendations
- 10.2 Pairing
- 10.2.1 Relative gain array
- 10.2.2 Distillation column example
- 10.2.3 Static mixer example
- 10.2.4 Hidden control loops
- 10.2.5 Relative gains less than zero
- 10.2.6 Relative gains from zero to one
- 10.2.7 Relative gains greater than one
- 10.2.8 Model predictive control
- 10.3 Decoupling
- 10.4 Directional move suppression
- 10.5 Tuning
- 10.6 Test results
- Key points
- 11. Cascade control
- 11.1 Introduction
- 11.1.1 Perspective
- 11.1.2 Overview
- 11.1.3 Recommendations
- 11.2 Configuration and tuning
- 11.3 Process control benefits
- 11.4 Process knowledge benefits
- 11.5 Watch-outs
- 11.6 Test results
- Key points
- 12. Advanced regulatory control
- 12.1 Introduction
- 12.1.1 Perspective
- 12.1.2 Overview
- 12.1.3 Recommendations
- 12.2 Feedforward control
- 12.2.1 Opportunities
- 12.2.2 Watch-outs
- 12.3 Intelligent output action
- 12.3.1 Opportunities
- 12.3.2 Watch-outs
- 12.4 Intelligent integral action
- 12.4.1 Opportunities
- 12.4.2 Watch-outs
- 12.5 Dead time compensation
- 12.5.1 Opportunities
- 12.5.2 Watch-outs
- 12.6 Valve position control
- 12.6.1 Opportunities
- 12.6.2 Watch-outs
- 12.7 Override control
- 12.7.1 Opportunities
- 12.7.2 Watch-outs
- 12.8 Test results
- Key points
- 13. Process control improvement
- 13.1 Introduction
- 13.1.1 Perspective
- 13.1.2 Overview
- 13.1.3 Recommendations
- 13.2 Unit operation metrics
- 13.3 Opportunities
- 13.3.1 Variability
- 13.3.2 Increasing capacity and efficiency
- 13.3.3 Effective use of models
- 13.3.4 Sizing and assessment
- 13.4 Key questions
- Key points
- 14. Auto tuners and adaptive control
- 14.1 Introduction
- 14.1.1 Perspective
- 14.1.2 Overview
- 14.1.3 Recommendations
- 14.2 Methodology
- Key points
- 15. Batch optimization
- 15.1 Introduction
- 15.1.1 Perspective
- 15.1.2 Overview
- 15.1.3 Recommendations
- 15.2 Cycle time
- 15.3 Profile
- 15.4 End point
- Key points
- Appendix A. Automation system performance top 10 concepts
- Appendix B. Basics of PID controllers
- Appendix C. Controller performance
- Appendix D. Discussion
- Appendix E. Enhanced PID for wireless and analyzer applications
- Appendix F. First principle process relationships
- Appendix G. Gas pressure dynamics
- Appendix H. Convective heat transfer coefficients
- Appendix I. Interactive to noninteractive time constant conversion
- Appendix. Jacket and coil temperature control
- Appendix K. PID forms and conversion of tuning settings
- Appendix L. Liquid mixing dynamics
- Appendix M. Measurement speed requirements for SIS
- References
- Bibliography
- About the author
- Index.