Kazalo:
  • 1. Fundamentals
  • 1.1 Introduction
  • 1.1.1 Perspective
  • 1.1.2 Overview
  • 1.1.3 Recommendations
  • 1.2 PID controller
  • 1.2.1 Proportional mode
  • 1.2.2 Integral mode
  • 1.2.3 Derivative mode
  • 1.2.4 ARW and output limits
  • 1.2.5 Control action and valve action
  • 1.2.6 Operating modes
  • 1.3 Loop dynamics
  • 1.3.1 Types of process responses
  • 1.3.2 Dead times and time constants
  • 1.3.3 Open loop self-regulating and integrating process gains
  • 1.3.4 Deadband, resolution, and threshold sensitivity
  • 1.4 Typical mode settings
  • 1.5 Typical tuning methods
  • 1.5.1 Lambda tuning for self-regulating processes
  • 1.5.2 Lambda tuning for integrating processes
  • 1.5.3 IMC tuning for self-regulating processes
  • 1.5.4 IMC tuning for integrating processes
  • 1.5.5 Skogestad internal model control tuning for self-regulating processes
  • 1.5.6 SIMC tuning for integrating processes
  • 1.5.7 Traditional open loop tuning
  • 1.5.8 Modified Ziegler-Nichols reaction curve tuning
  • 1.5.9 Modified Ziegler-Nichols ultimate oscillation tuning
  • 1.5.10 Quarter amplitude oscillation tuning
  • 1.5.11 SCM tuning for self-regulating processes
  • 1.5.12 SCM tuning for integrating processes
  • 1.5.13 SCM tuning for runaway processes
  • 1.5.14 Maximizing absorption of variability tuning for surge tank level
  • 1.6 Test results
  • 1.6.1 Performance of tuning settings on dead time dominant processes
  • 1.6.2 Performance of tuning settings on near-integrating processes
  • 1.6.3 Performance of tuning settings on true integrating processes
  • 1.6.4 Performance of tuning settings on runaway processes
  • 1.6.5 Slow oscillations from low PID gain in integrating and runaway processes
  • 1.6.6 Performance of tuning methods on various processes
  • Key points
  • 2. Unified methodology
  • 2.1 Introduction
  • 2.1.1 Perspective
  • 2.1.2 Overview
  • 2.1.3 Recommendations
  • 2.2 PID features
  • 2.2.1 PID form
  • 2.2.2 External reset feedback
  • 2.2.3 PID structure
  • 2.2.4 Split range
  • 2.2.5 Signal characterization
  • 2.2.6 Feedforward
  • 2.2.7 Decoupling
  • 2.2.8 Output tracking and remote output
  • 2.2.9 Setpoint filter, lead-lag, and rate limits
  • 2.2.10 Enhanced PID for wireless and analyzers
  • 2.3 Automation system difficulties
  • 2.3.1 Open loop gain problems
  • 2.3.2 Time constant problems
  • 2.3.3 Dead time problems
  • 2.3.4 Limit cycle problems
  • 2.3.5 Noise problems
  • 2.3.6 Accuracy and precision problems
  • 2.4 Process objectives
  • 2.4.1 Maximize turndown
  • 2.4.2 Maximize safety and environmental protection
  • 2.4.3 Minimize product variability
  • 2.4.4 Maximize process efficiency and capacity
  • 2.5 Step-by-step solutions
  • 2.6 Test results
  • Key points
  • 3. Performance criteria
  • 3.1 Introduction
  • 3.1.1 Perspective
  • 3.1.2 Overview
  • 3.1.3 Recommendations
  • 3.2 Disturbance response metrics
  • 3.2.1 Accumulated error
  • 3.2.2 Peak error
  • 3.2.3 Disturbance lag
  • 3.3 Setpoint response metrics
  • 3.3.1 Rise time
  • 3.3.2 Overshoot and undershoot
  • Key points
  • 4. Effect of process dynamics
  • 4.1 Introduction
  • 4.1.1 Perspective
  • 4.1.2 Overview
  • 4.1.3 Recommendations
  • 4.2 Effect of mechanical design
  • 4.2.1 Equipment and piping dynamics
  • 4.2.2 Common equipment and piping design mistakes
  • 4.3 Estimation of total dead time
  • 4.4 Estimation of open loop gain
  • 4.5 Major types of process responses
  • 4.5.1 Self-regulating processes
  • 4.5.2 Integrating processes
  • 4.5.3 Runaway processes
  • 4.6 Examples
  • 4.6.1 Waste treatment pH loops (self-regulating process)
  • 4.6.2 Boiler feedwater flow loop (self-regulating process)
  • 4.6.3 Boiler drum level loop (integrating process)
  • 4.6.4 Furnace pressure loop (near-integrating process)
  • 4.6.5 Exothermic reactor cascade temperature loop (runaway process)
  • 4.6.6 Biological reactor biomass concentration loop (runaway process)
  • Key points
  • 5. Effect of controller dynamics
  • 5.1 Introduction
  • 5.1.1 Perspective
  • 5.1.2 Overview
  • 5.1.3 Recommendations
  • 5.2 Execution rate and filter time
  • 5.2.1 First effect via equation for integrated error
  • 5.2.2 Second effect via equations for implied dead time
  • 5.3 Smart reset action
  • 5.4 Diagnosis of tuning problems
  • 5.5 Furnace pressure loop example (near-integrating)
  • 5.6 Test results
  • Key points
  • 6. Effect of measurement dynamics
  • 6.1 Introduction
  • 6.1.1 Perspective
  • 6.1.2 Overview
  • 6.1.3 Recommendations
  • 6.2 Wireless update rate and transmitter damping
  • 6.2.1 First effect via equation for integrated error
  • 6.2.2 Second effect via equations for implied dead time
  • 6.3 Analyzers
  • 6.4 Sensor lags and delays
  • 6.5 Noise and repeatability
  • 6.6 Threshold sensitivity and resolution limits
  • 6.7 Rangeability (turndown)
  • 6.8 Runaway processes
  • 6.9 Accuracy, precision, and drift
  • 6.10 Attenuation and deception
  • 6.11 Examples
  • 6.11.1 Waste treatment pH loop (self-regulating process)
  • 6.11.2 Boiler feedwater flow loop (self-regulating process)
  • 6.11.3 Boiler drum level loop (integrating process)
  • 6.11.4 Furnace pressure loop (near-integrating process)
  • 6.11.5 Exothermic reactor cascade temperature loop (runaway process)
  • 6.11.6 Biological reactor biomass concentration loop (runaway process)
  • 6.12 Test results
  • Key points
  • 7. Effect of valve and variable frequency drive dynamics
  • 7.1 Introduction
  • 7.1.1 Perspective
  • 7.1.2 Overview
  • 7.1.3 Recommendations
  • 7.2 Valve positioners and accessories
  • 7.2.1 Pneumatic positioners
  • 7.2.2 Digital positioners
  • 7.2.3 Current to pneumatic (I/P) transducers
  • 7.2.4 Solenoid valves
  • 7.2.5 Volume boosters
  • 7.3 Actuators, shafts, and stems
  • 7.3.1 Diaphragm actuators
  • 7.3.2 Piston actuators
  • 7.3.3 Linkages and connections
  • 7.4 VFD system design
  • 7.4.1 Pulse width modulation
  • 7.4.2 Cable problems
  • 7.4.3 Bearing problems
  • 7.4.4 Speed slip
  • 7.4.5 Motor requirements
  • 7.4.6 Drive controls
  • 7.5 Dynamic response
  • 7.5.1 Control valve response
  • 7.5.2 VFD response
  • 7.5.3 Dead time approximation
  • 7.5.4 Deadband and resolution
  • 7.5.5 When is a valve or VFD too slow?
  • 7.5.6 Limit cycles
  • 7.6 Installed flow characteristics and rangeability
  • 7.6.1 Valve flow characteristics
  • 7.6.2 Valve rangeability
  • 7.6.3 VFD flow characteristics
  • 7.6.4 VFD rangeability
  • 7.7 Best practices
  • 7.7.1 Control valve design specifications
  • 7.7.2 VFD design specifications
  • 7.8 Test results
  • Key points
  • 8. Effect of disturbances
  • 8.1 Introduction
  • 8.1.1 Perspective
  • 8.1.2 Overview
  • 8.1.3 Recommendations
  • 8.2 Disturbance dynamics
  • 8.2.1 Load time constants
  • 8.2.2 Load rate limit
  • 8.2.3 Disturbance dead time
  • 8.2.4 Disturbance oscillations
  • 8.3 Disturbance location
  • 8.4 Disturbance troubleshooting
  • 8.4.1 Sources of fast oscillations
  • 8.4.2 Sources of slow oscillations
  • 8.5 Disturbance mitigation
  • 8.6 Test results
  • Key points
  • 9. Effect of nonlinearities
  • 9.1 Introduction
  • 9.1.1 Perspective
  • 9.1.2 Overview
  • 9.1.3 Recommendations
  • 9.2 Variable gain
  • 9.2.1 Cascade control
  • 9.2.2 Reversals of process sign
  • 9.2.3 Signal characterization
  • 9.2.4 Gain scheduling
  • 9.2.5 Adaptive control
  • 9.2.6 Gain margin
  • 9.3 Variable dead time
  • 9.4 Variable time constant
  • 9.5 Inverse response
  • 9.6 Test results
  • Key points
  • 10. Effect of interactions
  • 10.1 Introduction
  • 10.1.1 Perspective
  • 10.1.2 Overview
  • 10.1.3 Recommendations
  • 10.2 Pairing
  • 10.2.1 Relative gain array
  • 10.2.2 Distillation column example
  • 10.2.3 Static mixer example
  • 10.2.4 Hidden control loops
  • 10.2.5 Relative gains less than zero
  • 10.2.6 Relative gains from zero to one
  • 10.2.7 Relative gains greater than one
  • 10.2.8 Model predictive control
  • 10.3 Decoupling
  • 10.4 Directional move suppression
  • 10.5 Tuning
  • 10.6 Test results
  • Key points
  • 11. Cascade control
  • 11.1 Introduction
  • 11.1.1 Perspective
  • 11.1.2 Overview
  • 11.1.3 Recommendations
  • 11.2 Configuration and tuning
  • 11.3 Process control benefits
  • 11.4 Process knowledge benefits
  • 11.5 Watch-outs
  • 11.6 Test results
  • Key points
  • 12. Advanced regulatory control
  • 12.1 Introduction
  • 12.1.1 Perspective
  • 12.1.2 Overview
  • 12.1.3 Recommendations
  • 12.2 Feedforward control
  • 12.2.1 Opportunities
  • 12.2.2 Watch-outs
  • 12.3 Intelligent output action
  • 12.3.1 Opportunities
  • 12.3.2 Watch-outs
  • 12.4 Intelligent integral action
  • 12.4.1 Opportunities
  • 12.4.2 Watch-outs
  • 12.5 Dead time compensation
  • 12.5.1 Opportunities
  • 12.5.2 Watch-outs
  • 12.6 Valve position control
  • 12.6.1 Opportunities
  • 12.6.2 Watch-outs
  • 12.7 Override control
  • 12.7.1 Opportunities
  • 12.7.2 Watch-outs
  • 12.8 Test results
  • Key points
  • 13. Process control improvement
  • 13.1 Introduction
  • 13.1.1 Perspective
  • 13.1.2 Overview
  • 13.1.3 Recommendations
  • 13.2 Unit operation metrics
  • 13.3 Opportunities
  • 13.3.1 Variability
  • 13.3.2 Increasing capacity and efficiency
  • 13.3.3 Effective use of models
  • 13.3.4 Sizing and assessment
  • 13.4 Key questions
  • Key points
  • 14. Auto tuners and adaptive control
  • 14.1 Introduction
  • 14.1.1 Perspective
  • 14.1.2 Overview
  • 14.1.3 Recommendations
  • 14.2 Methodology
  • Key points
  • 15. Batch optimization
  • 15.1 Introduction
  • 15.1.1 Perspective
  • 15.1.2 Overview
  • 15.1.3 Recommendations
  • 15.2 Cycle time
  • 15.3 Profile
  • 15.4 End point
  • Key points
  • Appendix A. Automation system performance top 10 concepts
  • Appendix B. Basics of PID controllers
  • Appendix C. Controller performance
  • Appendix D. Discussion
  • Appendix E. Enhanced PID for wireless and analyzer applications
  • Appendix F. First principle process relationships
  • Appendix G. Gas pressure dynamics
  • Appendix H. Convective heat transfer coefficients
  • Appendix I. Interactive to noninteractive time constant conversion
  • Appendix. Jacket and coil temperature control
  • Appendix K. PID forms and conversion of tuning settings
  • Appendix L. Liquid mixing dynamics
  • Appendix M. Measurement speed requirements for SIS
  • References
  • Bibliography
  • About the author
  • Index.