Atomic absorption spectrometry : an introduction /

We have restricted the scope of this tutorial book to the study of fundamentals and practical use of such popular and efficient atomic absorption techniques. An up-to-date account of AAS fundamentals, instrumentation, special techniques, and elemental analysis applications is provided here. To do so...

Full description

Saved in:
Bibliographic Details
Main Authors: Sanz-Medel, Alfredo (Author), Pereiro, Rosario (Author)
Format: Electronic eBook
Language:English
Published: New York, [New York] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2014.
Edition:Second edition.
Subjects:
Online Access:An electronic book accessible through the World Wide Web; click to view
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • 1. An introduction to analytical atomic spectrometry
  • 1.1 Basic interactions of electromagnetic radiation with atoms for chemical analysis
  • 1.2 Atomic line spectra and their origin
  • 1.3 Atomic line characteristics
  • 1.4 Atomic line spectral width
  • 1.4.1 Natural broadening of lines
  • 1.4.2 Doppler broadening
  • 1.4.3 Lorentz broadening
  • 1.4.4 Self-absorption effects
  • 1.4.5 Other broadening processes
  • 1.5 A comparative overview of analytical atomic spectrometric techniques
  • 1.5.1 Dissolved sample analysis techniques
  • 1.5.2 Direct solid analysis techniques
  • 2. Theory and basic concepts in atomic absorption spectrometry
  • 2.1 General introduction
  • 2.2 The basic atomic absorption spectrometry experiment
  • 2.3 The absorption coefficient concept
  • 2.4 Quantitative analysis by atomic absorption spectrometry
  • 2.5 Interferences in flame analytical atomic spectrometry techniques
  • 2.5.1 Spectral interferences
  • 2.5.2 Physical (transport) interferences
  • 2.5.3 Chemical interferences
  • 2.5.4 Ionization interferences
  • 2.5.5 Temperature variations in the atomizer
  • 2.5.6 Light scattering and unspecific absorptions
  • 2.5.7 Quenching of the fluorescence
  • 2.6 Analytical performance characteristics of AAS
  • 2.6.1 Sensitivity and detection limits
  • 2.6.2 Selectivity of the three flame-based techniques
  • 2.6.3 Accuracy and precision
  • 2.6.4 Analytical linear range
  • 2.6.5 Versatility and sample throughput
  • 2.6.7 Robustness and availability of well-proven methodologies
  • 3. Basic components of atomic absorption spectrometric instruments
  • 3.1 Introduction: single-beam and double-beam instruments
  • 3.2 Primary radiation sources
  • 3.2.1 Hollow cathode lamps
  • 3.2.1.1 Details of the components of a HCL
  • 3.2.1.2 HCL operation
  • 3.2.1.3 Multi-element HCLs
  • 3.2.2 Electrodeless discharge lamps
  • 3.2.3 Boosted discharge lamps
  • 3.2.4 Diode lasers
  • 3.2.5 Continuous sources
  • 3.3 Atomizers: a general view
  • 3.4 Wavelength selectors
  • 3.5 Detectors
  • 3.6 Background correctors
  • 3.6.1 Deuterium background corrector
  • 3.6.2 Zeeman correction
  • 3.6.3 Smith-Hieftje correction
  • 4. Flame atomic absorption spectrometry
  • 4.1 Introduction
  • 4.2 The atomizer unit in flame atomic absorption spectrometry
  • 4.2.1 Nebulizer, nebulization chamber, and burner
  • 4.2.2 Flame
  • 4.2.3 Special sampling techniques
  • 4.3 Flame atomic absorption instrumentation
  • 4.3.1 Flame atomic absorption spectrometers
  • 4.3.2 Accessories
  • 4.3.2.1 Autosamplers
  • 4.3.2.2 Atom concentrator tube or slotted tube atom trap
  • 4.3.2.3 High-solid analyzer
  • 4.3.2.4 Flame microsampler
  • 4.3.2.5 Automatic burner rotation
  • 4.4 Analytical performance characteristics and interferences
  • 4.4.1 Spectral interferences
  • 4.4.2 Nonspectral interferences
  • 4.4.3 Calibration in flame atomic absorption spectrometry
  • 4.4.4 Analytical figures of merit
  • 4.4.5 Use of organic solvents
  • 4.5 Applications and example case studies
  • 4.5.1 Determination of calcium in milk
  • 4.5.2 Determination of molybdenum in fertilizers
  • 4.5.3 Determination of lead in gasoline
  • 4.5.4 Determination of boron, phosphorus, and sulfur by high-resolution continuum source FAAS for plant analysis
  • 5. Electrothermal atomic absorption spectrometry
  • 5.1 Introduction
  • 5.2 The electrothermal atomizer
  • 5.2.1 The atomization tube
  • 5.2.2 Side-heated atomizers
  • 5.3 Basic steps in analysis by electrothermal atomic absorption spectrometry: the temperature program
  • 5.4 Instrumentation
  • 5.4.1 Sample-introduction system
  • 5.4.2 Instrumental background correction
  • 5.4.3 Data acquisition and treatment
  • 5.5 Interferences
  • 5.5.1 Spectral interferences
  • 5.5.2 Nonspectral interferences
  • 5.6 Chemical modifiers
  • 5.7 Atomization from solids and slurries
  • 5.8 Analytical performance characteristics of electrothermal atomic absorption spectrometric methods
  • 5.9 Applications and example case studies
  • 5.9.1 Determination of lead in human urine and blood
  • 5.9.2 Determination of selenium in human milk
  • 5.9.3 Determination of sulfur in coal and ash slurry
  • 6. Hydride generation and cold-vapor atomic absorption spectrometry
  • 6.1 Introduction
  • 6.2 Volatile hydride generation by tetrahydroborate (III) in aqueous media
  • 6.2.1 Mechanisms of hydride formation
  • 6.2.2 Basic instrumentation
  • 6.2.3 Limits of detection
  • 6.2.4 Selectivity: sources of interferences
  • 6.3 Electrochemical generation of volatile hydrides
  • 6.4 Cold-vapor generation
  • 6.4.1 Mercury
  • 6.4.2 Cadmium
  • 6.5 Trapping/preconcentration of volatilized analytes
  • 6.6 Applications and example case studies
  • 6.6.1 Determination of arsenic in waters
  • 6.6.2 Determination of mercury and methylmercury in hair
  • 6.6.3 Determination of selenium in bean and soil samples using hydride generation, electrothermal atomic absorption spectrometry
  • 7. Flow analysis and atomic absorption spectrometry
  • 7.1 Introduction
  • 7.2 Flow injection analysis and atomic absorption spectrometry
  • 7.3 Basic instrument components: sample introduction unit, propulsion system, and connecting tubes
  • 7.3.1 Sample introduction unit
  • 7.3.2 Propulsion system
  • 7.3.3 Connecting tubes
  • 7.4 Simple common manifolds: dilution, reagent addition, and calibration
  • 7.5 Solid-liquid separation and preconcentration
  • 7.5.1 Sorption
  • 7.5.2 Precipitation and coprecipitation
  • 7.6 Gas-phase formation strategies
  • 7.6.1 Flow systems for the formation of volatile derivatives of the analyte(s)
  • 7.6.2 Approaches for preconcentration in the gas phase
  • 7.7 Miniaturized preconcentration methods based on liquid-liquid extraction
  • 7.8 Sample digestion
  • 7.8.1 Online photo-oxidation flow systems
  • 7.8.2 Online microwave-assisted digestion
  • 7.9 Chromatographic separations coupled online to atomic absorption spectrometry
  • 7.10 Applications and example case studies
  • 7.10.1 Online aluminium preconcentration and its application to the determination of the metal in dialysis concentrates
  • 7.10.2 Indirect atomic absorption spectrometric determination of iodine in milk products
  • 7.10.3 High-performance liquid chromatography, microwave digestion, hydride generation, AAS for inorganic and organic arsenic speciation in fish tissue
  • 8. Emerging fields of applications, chemometrics, quality-control and troubleshooting
  • 8.1 Emerging fields of atomic absorption spectrometry applications
  • 8.2 Basic chemometric techniques in AAS
  • 8.3 Quality-control guidelines and troubleshooting
  • 8.3.1 Flame AAS
  • 8.3.1.1 Light system
  • 8.3.1.2 Nebulizer and burner system
  • 8.3.1.3 System cleanliness
  • 8.3.2 Electrothermal AAS
  • 8.3.2.1 Autosampler
  • 8.3.2.2 Furnace workhead
  • 8.3.2.3 Background correction
  • Appendix A. Buyer's guide
  • Appendix B. Glossary of terms
  • Appendix C. Standards
  • References
  • Index.