PEM fuel cells thermal and water management fundamentals /

Polymer electrolyte membrane (PEM) fuel cells, which convert the chemical energy stored in hydrogen fuel directly and efficiently to electrical energy with water as the only by-product, have the potential to reduce our energy usage, pollutant emissions, and dependency on fossil fuels. Tremendous eff...

Full description

Saved in:
Bibliographic Details
Main Author: Wang, Yun
Other Authors: Chen, Ken S., Cho, Sung Chan
Format: Electronic eBook
Language:English
Published: [New York, N.Y.] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2013.
Subjects:
Online Access:An electronic book accessible through the World Wide Web; click to view
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Preface
  • List of figures
  • List of tables
  • Nomenclature
  • 1. Introduction
  • 1.1 Energy challenges
  • 1.2 Fuel cells and their roles in addressing the energy challenges
  • 1.3 PEM fuel cells
  • 1.3.1 PEM fuel cell operation
  • 1.3.2 Current status of PEM fuel cells
  • 1.3.3 Thermal and water management
  • 2. Basics of PEM fuel cells
  • 2.1 Thermodynamics
  • 2.1.1 Internal energy and the first law of thermodynamics
  • 2.1.2 Enthalpy change
  • 2.1.3 Entropy change and the second law of thermodynamics
  • 2.1.4 Gibbs free energy and thermodynamic voltage
  • 2.1.5 Chemical potential and Nernst equation
  • 2.1.6 Relative humidity and phase change
  • 2.2 Electrochemical reaction kinetics
  • 2.2.1 Electrochemical kinetics
  • 2.2.2 Electrochemical mechanisms in PEM fuel cells
  • 2.2.3 Linear approximation and Tafel equation
  • 2.3 Voltage loss mechanisms and a simplified model
  • 2.3.1 Open circuit voltage (OCV)
  • 2.3.2 Activation loss
  • 2.3.3 Ohmic loss
  • 2.3.4 Transport voltage loss
  • 2.3.5 Current-voltage (I-V) curve and operation efficiency
  • 2.3.6 Role of water and thermal management
  • 2.4 Chapter summary
  • 3. Fundamentals of heat and mass transfer
  • 3.1 Introduction
  • 3.2 Conservation equations
  • 3.2.1 General forms
  • 3.2.2 Mass and momentum conservation
  • 3.2.3 Energy equation
  • 3.2.4 Species transport equation
  • 3.3 Constitutive equations
  • 3.3.1 A lattice model
  • 3.3.2 Fourier's law and Fick's law
  • 3.4 Scaling and dimensionless groups
  • 3.4.1 Scaling and dimensionless equations
  • 3.4.2 Dimensionless groups
  • 3.5 Chapter summary
  • 4. Water and its transport in the polymer electrolyte membrane
  • 4.1 Introduction to the polymer electrolyte membrane
  • 4.2 Ion transport and ionic conductivity
  • 4.2.1 Proton transport
  • 4.2.2 Ionic conductivity correlations
  • 4.2.3 Ionic conductivity measurement
  • 4.3 Water transport in polymer electrolyte membranes
  • 4.3.1 Transport mechanisms
  • 4.3.2 Water holding capacity
  • 4.4 Water quantification using neutron radiography
  • 4.5 Ion transport in cathode catalyst layers
  • 4.5.1 Variation in water content in catalyst layers
  • 4.5.2 Proton transport in cathode catalyst layers
  • 4.5.3 Multiple-layered cathode catalyst layers
  • 4.6 Chapter summary
  • 5. Vapor-phase water removal and management
  • 5.1 Mass transport overview
  • 5.2 Diffusion
  • 5.2.1 Diffusivity
  • 5.2.2 Molecular versus Knudsen diffusion
  • 5.2.3 Diffusion in GDLs
  • 5.3 Species convection
  • 5.3.1 Flow modeling with constant-flow assumption
  • 5.3.2 Flow formulation without the constant-flow assumption
  • 5.3.3 Convection in GDLs
  • 5.4 Pore-scale transport
  • 5.4.1 Stochastic material reconstruction
  • 5.4.2 Pore-scale transport modeling
  • 5.4.3 Pore-level phenomena
  • 5.5 Transient phenomena
  • 5.5.1 Transient terms and time constants
  • 5.5.2 Transient undergoing constant voltage or step change in voltage
  • 5.5.3 Transient undergoing constant current or step change in current
  • 5.6 Water management between a PEM fuel cell and fuel processor
  • 5.6.1 Water balance model
  • 5.6.2 Effect of the steam-to-carbon ratio
  • 5.7 Chapter summary
  • 6. Liquid water dynamics and removal
  • 6.1 Multiphase flow overview
  • 6.1.1 Modeling multi-phase flows
  • 6.2 Multiphase flow in GDLS/CLS
  • 6.2.1 Experimental visualization
  • 6.2.1.1 X-ray imaging
  • 6.2.1.2 Neutron radiography
  • 6.2.2 Multiphase mixture (M2) formulation
  • 6.2.2.1 Flow equations
  • 6.2.2.2 Species transport
  • 6.2.2.3 Model prediction
  • 6.2.3 Carbon paper (CP) versus carbon cloth (CC)
  • 6.2.4 Spatially varying properties
  • 6.2.4.1 Through-plane variation in the GDL property
  • 6.2.4.2 In-plane property variation and the effect of land compression
  • 6.2.4.3 Microporous layers (MPLs)
  • 6.3 Multiphase flow in gas flow channels (GFCS)
  • 6.3.1 Experimental visualization
  • 6.3.2 Two-phase flow patterns
  • 6.3.3 Modeling two-phase flow
  • 6.3.3.1 The mixture model
  • 6.3.3.2 Two-fluid modeling
  • 6.4 Water droplet dynamics at the GDL/GFC interface
  • 6.4.1 Force balance on a spherical-shape droplet
  • 6.4.2 Droplet deformation
  • 6.4.3 Droplet detachment
  • 6.4.3.1 Control volume method
  • 6.4.3.2 Derivation using the drag coefficient (CD)
  • 6.5 Chapter summary
  • 7. Ice dynamics and removal
  • 7.1 Subfreezing operation-overview
  • 7.2 Ice formation
  • 7.2.1 Water transport and conservation
  • 7.2.2 Three cold-start stages
  • 7.2.2.1 First stage: membrane hydration
  • 7.2.2.2 Second stage: ice formation
  • 7.2.2.3 Third stage: ice melting
  • 7.3 Voltage loss due to ice formation
  • 7.3.1 Spatial variation of the oxygen reduction reaction (ORR)
  • 7.3.2 The ORR rate under subfreezing temperature
  • 7.3.3 Oxygen profile in the catalyst layer
  • 7.3.4 Voltage loss due to ice formation
  • 7.3.5 A model of cold-start cell voltage
  • 7.4 State of subfreezing water
  • 7.5 Chapter summary
  • 8. Thermal transport and management
  • 8.1 Heat transfer overview
  • 8.1.1 Heat transfer and its importance
  • 8.1.2 Heat transfer modes
  • 8.1.2.1 Heat conduction
  • 8.1.2.2 Convective heat transfer
  • 8.1.2.3 Heat radiation
  • 8.1.3 Heat transfer in porous media
  • 8.2 Heating mechanisms
  • 8.2.1 The entropic heat
  • 8.2.2 Irreversibility of the electrochemical reactions
  • 8.2.3 The Joules heat
  • 8.3 Steady-state heat transfer
  • 8.3.1 One-dimensional (1D) heat transfer analysis
  • 8.3.2 Two-dimensional (2D) heat transfer analysis
  • 8.3.3 Numerical analysis
  • 8.3.3.1 Macroscopic model prediction
  • 8.3.3.2 Pore-level heat transfer
  • 8.4 Transient phenomena
  • 8.4.1 General transient operation
  • 8.4.2 Transient subfreezing operation
  • 8.4.2.1 Temperature evolution and voltage loss
  • 8.4.2.2 Activation voltage loss
  • 8.4.2.3 Ohmic voltage loss
  • 8.5 Experimental measurement of thermal conductivity
  • 8.6 Cooling methods
  • 8.6.1 Heat spreaders cooling
  • 8.6.2 Cooling by air or liquid flow
  • 8.6.3 Phase-change-based cooling
  • 8.7 Example: a thermal system of automotive fuel cells
  • 8.7.1 A lumped-system model of a PEM fuel cell
  • 8.7.2 Bypass valve
  • 8.7.3 Radiator
  • 8.7.4 Transport delay
  • 8.7.5 Fluid mixer
  • 8.7.6 Cathode intercooler
  • 8.7.7 Anode heat exchanger
  • 8.8 Chapter summary
  • 9. Coupled thermal-water management: phase change
  • 9.1 Introduction to phase change
  • 9.2 Vapor-liquid phase change: evaporation and condensation
  • 9.2.1 Vapor-phase water diffusion and heat pipe effect
  • 9.2.2 GDL de-wetting
  • 9.2.3 GDL de-wetting and voltage loss
  • 9.2.4 A general definition of the Damkohler number, Da
  • 9.2.4.1 Local heating and vapor-phase removal
  • 9.2.4.2 A specific Damkohler number
  • 9.2.4.3 Liquid-free passages
  • 9.2.4.4 2D numerical simulation
  • 9.3 Freezing/thawing
  • 9.3.1 Temperature spatial and temporal variation
  • 9.3.2 Non-isothermal cold start
  • 9.3.3 Freezing/thawing and degradation
  • 9.4 System-level analysis of coupled thermal and water management
  • 9.4.1 Flow rates of species and two-phase flows
  • 9.4.2 Energy balance
  • 9.5 Chapter summary.