Aerospace sensors

The present series is concerned with sensors per se, and because the subject matter is so wide-ranging in both scope and maturity, this must be reflected within the individual volumes. So, whereas care has been taken to include a considerable amount of practical material, the proportion of such leav...

Full description

Saved in:
Bibliographic Details
Main Author: Nebylov, A. V. (Aleksandr Vladimirovich)
Format: Electronic eBook
Language:English
Published: [New York, N.Y.] (222 East 46th Street, New York, NY 10017) : Momentum Press, c2013.
Series:Sensor technology series.
Subjects:
Online Access:An electronic book accessible through the World Wide Web; click to view
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Series preface
  • Preface
  • Acknowledgments
  • About the series editor
  • About the editor
  • 1. Introduction
  • 1.1 General considerations
  • 1.1.1 Types of aerospace vehicles and missions
  • 1.1.2 The role of sensors and control systems in aerospace
  • 1.1.3 Specific design criteria for aerospace vehicles and their sensors
  • 1.1.4 Physical principles influencing primary aerospace sensor design
  • 1.1.5 Reference frames accepted in aviation and astronautics
  • 1.2 Characteristics and challenges of the atmospheric environment
  • 1.2.1 Components of the earth's atmosphere
  • 1.2.2 Stationary models of the atmosphere
  • 1.2.3 Anisotropy and variability in the atmosphere
  • 1.2.4 Electrical charges in the atmosphere
  • 1.2.5 Electromagnetic wave propagation in the atmosphere
  • 1.2.6 Geomagnetism
  • 1.2.7 The planetary atmosphere
  • 1.3 Characteristics and challenges of the space environment
  • 1.3.1 General considerations
  • 1.3.2 Near-earth space
  • 1.3.3 Circumsolar (near-sun) space
  • 1.3.4 Matter in space
  • 1.3.5 Distances and time scales in deep space
  • References
  • 2. Air pressure-dependent sensors
  • 2.1 Basic aircraft instrumentation
  • 2.2 Fundamental physical properties of airflow
  • 2.2.1 Fundamental airflow physical property definitions
  • 2.2.1.1 Pressure
  • 2.2.1.2 Air density
  • 2.2.1.3 Temperature
  • 2.2.1.4 Flow velocity
  • 2.2.2 The equation of state for a perfect gas
  • 2.2.3 Extension of definitions: total, dynamic, static, and stagnation
  • 2.2.4 The speed of sound and mach number
  • 2.2.4.1 The speed of sound
  • 2.2.4.2 Mach number and compressibility
  • 2.2.5 The source of aerodynamic forces
  • 2.3 Altitude conventions
  • 2.4 Barometric altimeters
  • 2.4.1 Theoretical considerations
  • 2.4.1.1 The troposphere
  • 2.4.1.2 The stratosphere
  • 2.4.2 Barometric altimeter principles and construction
  • 2.4.3 Barometric altimeter errors
  • 2.4.3.1 Methodical errors
  • 2.4.3.2 Instrumental errors
  • 2.5 Airspeed conventions
  • 2.6 The manometric airspeed indicator
  • 2.6.1 Manometric airspeed indicator principles and construction
  • 2.6.2 Theoretical considerations
  • 2.6.2.1 Subsonic incompressible operation
  • 2.6.2.2 Subsonic compressible operation
  • 2.6.2.3 Supersonic operation
  • 2.6.3 Manometric airspeed indicator errors
  • 2.6.3.1 Methodical errors
  • 2.6.3.2 Instrumental errors
  • 2.7 The vertical speed indicator (VSI)
  • 2.7.1 VSI principles and construction
  • 2.7.2 Theoretical considerations
  • 2.7.2.1 Lag rate (time constant)
  • 2.7.2.2 Sensitivity to mach number
  • 2.7.2.3 Sensitivity to altitude
  • 2.7.3 VSI errors
  • 2.8 Angles of attack and slip
  • 2.8.1 The pivoted vane
  • 2.8.2 The differential pressure tube
  • 2.8.3 The null-seeking pressure tube
  • References
  • Appendix
  • 3. Radar altimeters
  • 3.1 Introduction
  • 3.1.1 Definitions
  • 3.1.2 Altimetry methods
  • 3.1.3 General principles of radar altimetry
  • 3.1.4 Classification by different features
  • 3.1.5 Application and performance characteristics
  • 3.1.5.1 Aircraft applications
  • 3.1.5.2 Spacecraft applications
  • 3.1.5.3 Military applications
  • 3.1.5.4 Remote sensing applications
  • 3.1.6 Performance characteristics
  • 3.2 Pulse radar altimeters
  • 3.2.1 Principle of operation
  • 3.2.2 Pulse duration
  • 3.2.3 Tracking altimeters
  • 3.2.4 Design principles
  • 3.2.5 Features of altimeters with pulse compression
  • 3.2.6 Pulse laser altimetry
  • 3.2.7 Some examples
  • 3.2.8 Validation
  • 3.2.9 Future trends
  • 3.3 Continuous wave radar altimeters
  • 3.3.1 Principles of continuous wave radar
  • 3.3.2 FMCW radar waveforms
  • 3.3.3 Design principles and structural features
  • 3.3.3.1 Local oscillator automatic tuning
  • 3.3.3.2 Single-sideband receiver structure
  • 3.3.4 The Doppler effect
  • 3.3.5 Alternative measuring devices for FMCW altimeters
  • 3.3.6 Accuracy and unambiguous altitude
  • 3.3.7 Aviation applications
  • 3.4 Phase precise radar altimeters
  • 3.4.1 The phase method of range measurement
  • 3.4.2 The two-frequency phase method
  • 3.4.3 Ambiguity and accuracy in the two-frequency method
  • 3.4.4 Phase ambiguity resolution
  • 3.4.5 Waveforms
  • 3.4.6 Measuring devices and signal processing
  • 3.4.7 Remarks on the accuracy of CW and pulse radar altimeters
  • 3.5 Radioactive altimeters for space application
  • 3.5.1 Motivation and history
  • 3.5.2 Physical bases
  • 3.5.2.1 Features of radiation
  • 3.5.2.2 Generators of photon emission
  • 3.5.2.3 Receivers
  • 3.5.2.4 Propagation features
  • 3.5.3 Principles of operation
  • 3.5.4 Radiation dosage
  • 3.5.5 Examples of radioisotope altimeters
  • References
  • 4. Autonomous radio sensors for motion parameters
  • 4.1 Introduction
  • 4.2 Doppler sensors for ground speed and crab angle
  • 4.2.1 Physical basis and functions
  • 4.2.2 Principle of operation
  • 4.2.3 Classification and features of sensors for ground speed and crab angle
  • 4.2.4 Generalized structural diagram for the ground speed and crab angle meter
  • 4.2.5 Design principles
  • 4.2.6 Sources of Doppler radar errors
  • 4.2.7 Examples
  • 4.3 Airborne weather sensors
  • 4.3.1 Weather radar as mandatory equipment of airliners and transport aircraft
  • 4.3.2 Multifunctionality of airborne weather radar
  • 4.3.3 Meteorological functions of AWR
  • 4.3.4 Principles of DWP detection with AWR
  • 4.3.4.1 Developing methods of DWP detection
  • 4.3.4.2 Cumulonimbus clouds and heavy rain
  • 4.3.4.3 Turbulence detection
  • 4.3.4.4 Wind shear detection
  • 4.3.4.5 Hail zone detection
  • 4.3.4.6 Probable icing-in-flight zone detection
  • 4.3.5 Surface mapping
  • 4.3.5.1 Comparison of radar and visual orientation
  • 4.3.5.2 The surface-mapping principle
  • 4.3.5.3 Reflecting behavior of the earth's surface
  • 4.3.5.4 The radar equation and signal correction
  • 4.3.5.5 Automatic classification of navigational landmarks
  • 4.3.6 AWR design principles
  • 4.3.6.1 The operating principle and typical structure of AWR
  • 4.3.6.2 AWR structures
  • 4.3.6.3 Performance characteristics: basic requirements
  • 4.3.7 AWR examples
  • 4.3.8 Lightning sensor systems: stormscopes
  • 4.3.9 Optical radar
  • 4.3.9.1 Doppler lidar
  • 4.3.9.2 Infrared locators and radiometers
  • 4.3.10 The integrated localization of dangerous phenomena
  • 4.4 Collision avoidance sensors
  • 4.4.1 Traffic alert and collision avoidance systems (TCAS)
  • 4.4.1.1 The purpose
  • 4.4.1.2 A short history
  • 4.4.1.3 TCAS levels of capability
  • 4.4.1.4 TCAS concepts and principles of operation
  • 4.4.1.5 Basic components
  • 4.4.1.6 Operation
  • 4.4.1.7 TCAS logistics
  • 4.4.1.8 Cockpit presentation
  • 4.4.1.9 Examples of system implementation
  • 4.4.2 The ground proximity warning system (GPWS)
  • 4.4.2.1 Purpose and necessity
  • 4.4.2.2 GPWS history, principles, and evolution
  • 4.4.2.3 GPWS modes
  • 4.4.2.4 Shortcomings of classical GPWS
  • 4.4.2.5 Enhanced GPWS
  • 4.4.2.6 Look-ahead warnings
  • 4.4.2.7 Implementation examples
  • References
  • 5. Devices and sensors for linear acceleration measurement
  • 5.1 Introduction
  • 5.2 Types of accelerometers
  • 5.2.1 Linear and pendulous accelerometers
  • 5.2.2 Direct conversion accelerometers and compensating accelerometers
  • 5.2.2.1 Direct conversion accelerometers
  • 5.2.2.2 Compensating accelerometers
  • 5.3 Accelerometer parameters
  • 5.3.1 Acceleration measurement range azmax
  • 5.3.2 Resolution azmin
  • 5.3.3 Zero signal (bias) a0
  • 5.3.4 Scale factor Ka
  • 5.3.5 Biasing error (misalignment)
  • 5.3.6 Accelerometer frequency characteristics
  • 5.3.7 Special accelerometer parameters
  • 5.3.7.1 Magnetic leakage
  • 5.3.7.2 Electromagnetic noise
  • 5.3.7.3 Readiness time
  • 5.3.7.4 Noise level in the accelerometer output
  • 5.3.7.5 Sensitivity to external constant and variable magnetic fields
  • 5.3.7.6 Sensitivity to changes in power supply voltage
  • 5.3.7.7 Sensitivity to external pressure, humidity, and radiation
  • 5.4 Float pendulous accelerometer (FPA)
  • 5.4.1 Basic EMU design schemes
  • 5.4.1.1 Advantages
  • 5.4.1.2 Disadvantages
  • 5.4.2 Hydrostatic accelerometer suspensions
  • 5.4.3 FPA float balancing
  • 5.4.4 Hydrodynamic forces and moments in the FPA
  • 5.4.5 Movement of FPA float under vibration
  • 5.5 Micromechanical accelerometers (MMAS)
  • 5.5.1 The single-axis MMA
  • 5.5.2 The three-axis MMA
  • 5.5.3 The compensating type MMA
  • 5.5.4 Solid-state MMA manufacturing techniques
  • References
  • 6. Gyroscopic devices and sensors
  • 6.1 Introduction
  • 6.1.1 Preliminary remarks
  • 6.1.2 Classification of gyros
  • 6.1.3 Gyroscopic instruments
  • 6.1.4 Positional gyros
  • 6.1.5 The vertical (or horizontal) gyro
  • 6.1.6 Orbit gyro
  • 6.1.7 Single degree of freedom (SDF) gyros
  • 6.1.8 Gyro stabilizers
  • 6.1.9 Gyroscopic instruments in aeronavigation
  • 6.1.10 Inertial navigation systems (INS)
  • 6.1.10.1 Types of INS
  • 6.1.10.2 Strapdown INS
  • 6.1.11 The scope of gyros and gyro instruments of various types
  • 6.2 Single degree of freedom (SDF) gyros
  • 6.2.1 The solid rotor SDF gyro
  • 6.2.2 The integrating gyro
  • 6.2.3 Rate of speed gauging
  • 6.2.3.1 Feedback contours of the angular rate gauge
  • 6.2.3.2 Design variants
  • 6.3 The TDF gyro in gimbal mountings
  • 6.3.1 Properties of a free gyro
  • 6.3.2 Areas of application, design features, and error sources
  • 6.3.3 Two-component angular speed measuring instruments
  • 6.4 The gyroscopic integrator for linear acceleration (GILA)
  • 6.4.1 Principles of GILA operation
  • 6.4.2 Sources of GILA errors
  • 6.5 Contactless suspension gyros
  • 6.5.1 Introduction
  • 6.5.2 The electrostatic gyroscope (ESG)
  • 6.5.2.1 ESG accuracy
  • 6.5.2.2 The ESG rotor
  • 6.5.2.3 The rotor electrostatic suspension
  • 6.5.2.4 Angular rotor position readout
  • 6.5.3 Conclusion
  • 6.6 The fiber optic gyro (FOG)
  • 6.6.1 The interferometric fiber optic gyro (IFOG)
  • 6.6.1.1 The basic IFOG scheme and the Sagnac effect
  • 6.6.1.2 Open-loop operation
  • 6.6.1.3 Closed-loop operation
  • 6.6.1.4 Fundamental limitations
  • 6.6.1.5 The multiple-axis IFOG
  • 6.6.1.6 The depolarized IFOG
  • 6.6.1.7 Applications of the IFOG
  • 6.6.2 The resonator fiber optic gyro (RFOG)
  • 6.7 The ring laser gyro (RLG)
  • 6.7.1 Introduction
  • 6.7.2 Principle of operation
  • 6.7.3 Frequency characteristics and mode-locking counter-rotating waves
  • 6.7.4 The elimination of mode-locking in counter-rotating waves
  • 6.7.5 Errors
  • 6.7.6 Performance and application
  • 6.7.7 Conclusion
  • 6.8 Dynamically tuned gyros (DTG)
  • 6.8.1 Introduction
  • 6.8.2 Key diagrams and dynamic tuning
  • 6.8.3 Operating modes
  • 6.8.4 Disturbance moments depending on external factors and instrumental errors
  • 6.8.5 Magnetic, aerodynamic, and thermal disturbance moments
  • 6.8.6 Design, application, technical characteristics
  • 6.8.7 Conclusion
  • 6.9 Solid vibrating gyros
  • 6.9.1 Introduction
  • 6.9.2 Dynamic behavior of the ideal solid vibrating gyro
  • 6.9.3 Operating modes of the solid vibrating gyro
  • 6.9.4 The nonideal solid vibrating gyro
  • 6.9.5 Control of the solid vibrating gyro
  • 6.9.6 Axisymmetric-shell gyros
  • 6.9.7 The HRG, history and current status
  • 6.9.8 HRG design characteristics
  • 6.9.9 Additional HRG references
  • 6.10 Micromechanical gyros
  • 6.10.1 Introduction
  • 6.10.2 Operating principles
  • 6.10.2.1 Linear-linear (LL-type) gyros
  • 6.10.2.2 Rotary-rotary (RR-type) gyro principles
  • 6.10.2.3 Fork and rod gyro principles
  • 6.10.2.4 Ring gyro principles
  • 6.10.3 Adjustment of oscillation modes in gyros of the LL and RR types
  • 6.10.4 Design, application, and performance
  • 6.10.4.1 Gyros of the LL and RR-type
  • 6.10.4.2 Fork and rod gyros
  • 6.10.4.3 Ring gyros
  • 6.10.5 Conclusion
  • References
  • 7. Compasses
  • 7.1 Introduction
  • 7.2 Magnetic compasses
  • 7.2.1 Brief historical sketch
  • 7.2.2 The earth's magnetic field
  • 7.2.3 Magnetic compass design principles and errors
  • 7.2.4 Examples of magnetic compasses structures
  • 7.3 Fluxgate and gyro-magnetic compasses
  • 7.3.1 Fluxgate and gyro-magnetic compasses design principles
  • 7.3.2 Examples of fluxgate and gyro-magnetic structures
  • 7.4 Electronic compasses
  • References
  • 8. Propulsion sensors
  • 8.1 Introduction
  • 8.2 Fuel quantity sensors
  • 8.2.1 Mechanical and electromechanical methods of level sensing
  • 8.2.1.1 Buoyancy or float methods
  • 8.2.1.2 Level sensing using pressure transducers
  • 8.2.2 Electronic methods of level sensing
  • 8.2.2.1 Conductivity level sensing
  • 8.2.2.2 Capacitive level sensing
  • 8.2.2.3 Heat-transfer level sensing
  • 8.2.2.4 Ultrasonic methods
  • 8.3 Fuel consumption sensors
  • 8.3.1 Introduction
  • 8.3.2 Flow-obstruction methods
  • 8.3.2.1 Practical considerations for obstruction meters
  • 8.3.3 The turbine flow meter
  • 8.3.4 The vane-type flow meter
  • 8.4 Pressure sensors
  • 8.4.1 Basic concepts
  • 8.4.2 Basic sensing methods
  • 8.4.2.1 The diaphragm
  • 8.4.2.2 Capsules
  • 8.4.2.3 The bourdon tube
  • 8.4.3 Signal acquisition
  • 8.4.3.1 Capacitive deflection transducers
  • 8.4.3.2 Inductive deflection transducers
  • 8.4.3.3 Potentiometric deflection transducers
  • 8.4.3.4 Null-balance servo pressure transducers
  • 8.4.4 Operational requirements
  • 8.5 Engine temperatures
  • 8.5.1 Intermediate turbine temperature (ITT)
  • 8.5.2 Oil temperature/fuel temperature
  • 8.5.3 Fire sensors
  • 8.5.4 Exhaust gas temperature (EGT)
  • 8.5.5 Nacelle temperature
  • 8.6 Tachometry
  • 8.6.1 The eddy current tachometer
  • 8.6.2 The AC generator tachometer
  • 8.6.3 The variable reluctance tachometer
  • 8.6.4 The Hall effect tachometer
  • 8.7 Vibration sensors, engine and nacelle
  • 8.8 Regulatory issues
  • References
  • Bibliography
  • 9. Principles and examples of sensor integration
  • 9.1 Sensor systems
  • 9.1.1 The sensor system concept
  • 9.1.2 Joint processing of readings from identical sensors
  • 9.1.3 Joint processing of readings from cognate sensors with different measurement ranges
  • 9.1.4 Joint processing of diverse sensors readings
  • 9.1.5 Linear and nonlinear sensor integration algorithms
  • 9.2 Fundamentals of integrated measuring system synthesis
  • 9.2.1 Synthesis problem statement
  • 9.2.2 Classes of dynamic system realization
  • 9.2.3 Measurement accuracy indices
  • 9.2.4 Excitation properties
  • 9.2.5 Objective functions for robust system optimisation
  • 9.2.6 Methods of dynamic system accuracy index analysis under excitation with given numerical characteristics of derivatives
  • 9.2.6.1 Estimation of error variance
  • 9.2.6.2 Example of error variance analysis
  • 9.2.6.3 Use of equivalent harmonic excitation
  • 9.2.6.4 Estimation of error maximal value
  • 9.2.7 System optimization under maximum accuracy criteria
  • 9.2.8 Procedures for the dimensional reduction of a measuring system
  • 9.2.8.1 Determination of an optimal set of sensors
  • 9.2.8.2 Analysis of the advantages of invariant system construction
  • 9.2.8.3 Advantages of the zeroing of several system parameters
  • 9.2.9 Realization and simulation of integration algorithms
  • 9.3 Examples of two-component integrated navigation systems
  • 9.3.1 Noninvariant robust integrated speed meter
  • 9.3.2 Integrated radio-inertial measurement
  • 9.3.3 Airborne gravimeter integration
  • 9.3.4 The orbital verticant
  • References
  • Epilogue
  • Index.