Quality recognition and prediction smarter pattern technology with the Mahalanobis-Taguchi system /

Gorde:
Xehetasun bibliografikoak
Egile nagusia: Teshima, Shoichi
Beste egile batzuk: Hasegawa, Yoshiko, Tatebayashi, Kazuo
Formatua: Baliabide elektronikoa eBook
Hizkuntza:ingelesa
Argitaratua: [New York, N.Y.] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2012.
Edizioa:1st ed.
Gaiak:
Sarrera elektronikoa:An electronic book accessible through the World Wide Web; click to view
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nam a2200000 a 4500
001 ebr10588195
003 CaPaEBR
005 20180830115253.0
006 m eo d
007 cr cn |||m|||a
008 120912s2012 nyua foab 001 0 eng d
020 |a 9781606503447 (electronic bk.) 
020 |a 1606503448 (electronic bk.) 
020 |z 9781606503423 (print) 
020 |z 1606503421 (print) 
024 7 |a 10.5643/9781606503447  |2 doi 
040 |a CaBNVSL  |c CaBNVSL  |d CaBNVSL 
035 |a (OCoLC)809681761 
050 4 |a TS156  |b .T476 2012 
082 0 4 |a 658.562  |2 23 
100 1 |a Teshima, Shoichi. 
245 1 0 |a Quality recognition and prediction  |h [electronic resource] :  |b smarter pattern technology with the Mahalanobis-Taguchi system /  |c Shoichi Teshima, Yoshiko Hasegawa, Kazuo Tatebayashi. 
250 |a 1st ed. 
260 |a [New York, N.Y.] (222 East 46th Street, New York, NY 10017) :  |b Momentum Press,  |c 2012. 
300 |a 1 electronic text (xvii, 220 p.) :  |b ill., digital file. 
504 |a Includes bibliographical references (p. 207-208) and index. 
505 0 |a Foreword -- Preface -- Acknowledgments --  
505 8 |a 1. Pattern recognition and the MT system -- 1.1 Overview of pattern recognition and the fields of application -- 1.2 Standard execution procedure for pattern recognition -- 1.3 Fields with substantial experience in the use of MT system applications --  
505 8 |a 2. Merits of the MT system and its computation methods -- 2.1 Characteristics shared by all MT system components -- 2.2 Features of the MT method -- 2.3 Features of the T method -- 2.4 The MT system computation formulas --  
505 8 |a 3. Data handled by the MT system and feature extraction -- 3.1 Use of measured values in an unmodified form -- 3.2 Performing feature extraction -- 3.3 Feature extraction technique from character pattern -- 3.4 Feature extraction technique from waveform pattern -- 3.5 Differences between other waveform features and variation values/abundance values --  
505 8 |a 4. MT method application procedure and important points to heed -- 4.1 Example of character recognition -- 4.2 Example of weather prediction --  
505 8 |a 5. T method application procedures and key points -- 5.1 Yield prediction for manufacturing-production using T method-1 -- 5.2 Character pattern recognition using the RT method --  
505 8 |a 6. Examples of actual applications -- 6.1 Blade wear monitoring via cutting vibration waveform (MT method) -- 6.2 Appearance inspection of a clutch disk -- 6.3 Monitoring of machine conditions (MT method) -- 6.4 Application to medical diagnosis (MT method) -- 6.5 Strength estimation based on raw material mixing (T method-1) -- 6.6. Real estate price prediction by T method-1 --  
505 8 |a Appendices -- A. Differences between the MT system and artificial intelligence -- B. Difference between the MT system and traditional statistical theory -- C. Supplementary considerations concerning mathematical formulas -- D. Strategy to use when data incorporates unmeasured values -- E. Fusion with artificial intelligence and other resources -- F. Mahalanobis distance computation using Microsoft Excel -- G. Paley's construct for generation of Hadamard matrice --  
505 8 |a Bibliography and reference sources -- Bibliography (in English) -- Bibliography (in Japanese) -- References -- Glossary: definition of terms -- Index -- About the authors. 
506 1 |a Restricted to libraries which purchase an unrestricted PDF download via an IP. 
520 3 |a The MT system is a diagnostic and predictive method for analyzing patterns in multivariate data that has provided benefits in many diverse applications over the past decade or so. It has proven itself superior in many cases to more traditional artificial intelligence applications such as neural nets. 
530 |a Also available in print. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Acrobat reader. 
588 |a Title from PDF t.p. (viewed on September 12, 2012). 
650 0 |a Taguchi methods (Quality control) 
650 0 |a Pattern recognition systems. 
650 0 |a Quality control  |x Statistical methods. 
653 |a Mahalanobis-Taguchi System 
653 |a pattern recognition 
653 |a pattern prediction 
653 |a Mahalanobis distance 
653 |a Taguchi Method 
653 |a Quality Engineering 
653 |a Quality Prediction 
653 |a Quality Recognition 
653 |a diagnostics 
653 |a MTS 
653 |a MT-Method 
653 |a T-Method 
653 |a Unit Space 
653 |a appearance inspection 
653 |a SN Ratio 
653 |a inspection 
653 |a medical inspection 
653 |a medical diagnosis 
653 |a plant monitoring 
653 |a medical monitoring 
700 1 |a Hasegawa, Yoshiko. 
700 1 |a Tatebayashi, Kazuo. 
776 0 8 |i Print version:  |z 1606503421  |z 9781606503423 
856 4 0 |u http://site.ebrary.com/lib/daystar/Doc?id=10588195  |z An electronic book accessible through the World Wide Web; click to view 
999 |c 197163  |d 197163