Structural geology algorithms vectors and tensors /

"Structural Geology has been taught, largely unchanged, for the last 50 years or more. The lecture part of most courses introduces students to concepts such as stress and strain, as well as more descriptive material like fault and fold terminology. The lab part of the course usually focuses on...

Descrición completa

Gardado en:
Detalles Bibliográficos
Autor Principal: Allmendinger, Richard Waldron
Autor Corporativo: ebrary, Inc
Outros autores: Cardozo, Nestor, Fisher, Donald M.
Formato: Electrónico eBook
Idioma:inglés
Publicado: Cambridge [England] : Cambridge University Press, 2012.
Subjects:
Acceso en liña:An electronic book accessible through the World Wide Web; click to view
Tags: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nam a2200000 a 4500
001 ebr10535790
003 CaPaEBR
006 m u
007 cr cn|||||||||
008 110725s2012 enka sb 001 0 eng d
010 |z  2011030685 
020 |z 9781107012004 (hardback) 
020 |z 9781107401389 (pbk.) 
020 |z 9781139207379 (e-book) 
040 |a CaPaEBR  |c CaPaEBR 
035 |a (OCoLC)776202553 
050 1 4 |a QE601.3.M38  |b A45 2012eb 
082 0 4 |a 551.801/5181  |2 23 
100 1 |a Allmendinger, Richard Waldron. 
245 1 0 |a Structural geology algorithms  |h [electronic resource] :  |b vectors and tensors /  |c Richard W. Allmendinger, Nestor Cardozo, Donald M. Fisher. 
260 |a Cambridge [England] :  |b Cambridge University Press,  |c 2012. 
300 |a xi, 290 p. :  |b ill. 
504 |a Includes bibliographical references and index. 
505 8 |a Machine generated contents note: Preface; 1. Problem solving in structural geology; 2. Coordinate systems, scalars and vectors; 3. Transformations of coordinate axes and vectors; 4. Matrix operations and indicial notation; 5. Tensors; 6. Stress; 7. Introduction to deformation; 8. Infinitesimal strain; 9. Finite strain; 10. Progressive strain histories and kinematics; 11. Velocity description of deformation; 12. Error analysis; References; Index. 
520 |a "Structural Geology has been taught, largely unchanged, for the last 50 years or more. The lecture part of most courses introduces students to concepts such as stress and strain, as well as more descriptive material like fault and fold terminology. The lab part of the course usually focuses on practical problem solving, mostly traditional me-thods for describing quantitatively the geometry of structures. While the lecture may introduce advanced concepts such as tensors, the lab commonly trains the student to use a combination of graphical methods like orthographic or spherical projection, as well as a variety of plane trigonometry solutions to various problems. This leads to a disconnect between lecture concepts that require a very precise understanding of coor-dinate systems (e.g., tensors) and lab methods that appear to have no common spatial or mathematical foundation. Students have no chance to understand that, for example, seemingly unconnected constructions like down-plunge projections and Mohr circles share a common mathematical heritage: they are both graphical representations of coordinate transformations"--  |c Provided by publisher. 
533 |a Electronic reproduction.  |b Palo Alto, Calif. :  |c ebrary,  |d 2011.  |n Available via World Wide Web.  |n Access may be limited to ebrary affiliated libraries. 
650 0 |a Geology, Structural  |x Mathematics. 
650 0 |a Rock deformation  |x Mathematical models. 
655 7 |a Electronic books.  |2 local 
700 1 |a Cardozo, Nestor. 
700 1 |a Fisher, Donald M. 
710 2 |a ebrary, Inc. 
856 4 0 |u http://site.ebrary.com/lib/daystar/Doc?id=10535790  |z An electronic book accessible through the World Wide Web; click to view 
999 |c 196797  |d 196797