Multiscale Simulations for Electrochemical Devices

Environmental protection and sustainability are major concerns in today's world, and a reduction in CO2 emission and the implementation of clean energy are inevitable challenges for scientists and engineers today. The development of electrochemical devices, such as fuel cells, Li-ion batteries,...

Full description

Saved in:
Bibliographic Details
Main Author: Asahi, Ryoji
Format: Electronic eBook
Language:English
Published: Milton : Pan Stanford Publishing, 2019.
Subjects:
Online Access:Taylor & Francis
OCLC metadata license agreement
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Table of Contents
  • Preface
  • 1: Computational Materials Design for Hydrogen Storage
  • 1.1 Background
  • 1.2 Methodology
  • 1.3 Transition-Metal Hydrides
  • 1.3.1 Thermodynamics for Hydrides
  • 1.3.2 Energetics of Transition-Metal Dihydrides
  • 1.4 Borohydrides
  • 1.4.1 Fundamental Properties of LiBH4
  • 1.4.2 Borohydrides with Multivalent Cations
  • 1.4.3 Thermodynamically Stability of Borohydrides
  • 1.4.4 Experimental Support
  • 1.5 Future Scope
  • 2: Atomistic Analysis of Electrolytes: Redox Potentials and Electrochemical Reactions in a Lithium-Ion Battery
  • 2.1 Introduction
  • 2.2 Redox Potential Computations Using the DFT/PCM Method
  • 2.2.1 Standard Redox Potential
  • 2.2.2 Standard Gibbs Free Energy Calculations Using the DFT/PCM Method
  • 2.2.3 Oxidation and Reduction Potentials of Typical Organic Solvents
  • 2.2.3.1 One-electron oxidation potential
  • 2.2.3.2 One-electron reduction potential
  • 2.3 Electrolyte Decomposition Analysis
  • 2.3.1 Global Reaction Route Mapping Method
  • 2.3.2 Reductive Decomposition of Ethylene Carbonate
  • 3.3.2.3 Constant Fermi energy calculation
  • 3.3.2.4 Electrosorption valency value and symmetry factor
  • 3.4 Applications
  • 3.4.1 Equilibrium Surface Phase Diagram
  • 3.4.2 Electrosorption Valency Value
  • 3.4.3 Potential-Dependent Spectroscopy
  • 3.4.4 Kinetics and Symmetry Factor
  • 3.4.5 Applications to New Materials
  • 3.5 Future Scope
  • 4: Atomistic Modeling of Photoelectric Cells for Artificial Photosynthesis
  • 4.1 Introduction
  • 4.2 Surface Modification of Semiconductors
  • 4.2.1 Metal-Nanoparticles Loaded on TiO2
  • 4.2.2 Defect Formations of N-doped Ta2O5
  • 4.3 Electron Transfer Dynamics in Semiconductor/Metal-Complex for CO2 Reduction
  • 4.3.1 Methodology
  • 4.3.2 Results and Discussion
  • 4.4 Summary and Future Scope
  • 5: Large-Scale Simulations I: Methods and Applications for a Li-Ion Battery
  • 5.1 Introduction
  • 5.2 Method
  • 5.2.1 Real-Space Grid Kohn-Sham DFT (RGDFT) Method [48]
  • 5.2.2 Divide-and-Conquer-Type RGDFT Method [48]
  • 5.2.3 Hybrid Quantum-Classical Simulation Method
  • 5.2.3.1 Buffered cluster method
  • 5.3 Applications