Multiscale Simulations for Electrochemical Devices

Environmental protection and sustainability are major concerns in today's world, and a reduction in CO2 emission and the implementation of clean energy are inevitable challenges for scientists and engineers today. The development of electrochemical devices, such as fuel cells, Li-ion batteries,...

Full description

Saved in:
Bibliographic Details
Main Author: Asahi, Ryoji
Format: Electronic eBook
Language:English
Published: Milton : Pan Stanford Publishing, 2019.
Subjects:
Online Access:Taylor & Francis
OCLC metadata license agreement
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000cam a2200000Mu 4500
001 9780429295454
003 FlBoTFG
005 20230428124858.0
006 m d
007 cr cnu---unuuu
008 200111s2019 xx o 000 0 eng d
020 |a 9781000021417 
020 |a 1000021416 
020 |a 9780429295454  |q (electronic bk.) 
020 |a 0429295456  |q (electronic bk.) 
020 |a 9781000021790  |q (electronic bk. : EPUB) 
020 |a 1000021793  |q (electronic bk. : EPUB) 
020 |z 9814800716 
020 |z 9789814800716 
035 |a (OCoLC)1135668785  |z (OCoLC)1135445645 
035 |a (OCoLC-P)1135668785 
040 |a OCoLC-P  |b eng  |c OCoLC-P 
050 4 |a QD555.5 
072 7 |a SCI  |x 013050  |2 bisacsh 
072 7 |a SCI  |x 013060  |2 bisacsh 
072 7 |a SCI  |x 040000  |2 bisacsh 
072 7 |a PH  |2 bicssc 
082 0 4 |a 541.37  |2 23 
100 1 |a Asahi, Ryoji.  |9 41626 
245 1 0 |a Multiscale Simulations for Electrochemical Devices  |h [electronic resource]. 
260 |a Milton :  |b Pan Stanford Publishing,  |c 2019. 
300 |a 1 online resource (345 p.) 
500 |a Description based upon print version of record. 
500 |a 5.3.1 Li-Ion Transfer through the Boundary between Solid/Electrolyte Interphase and Liquid Electrolyte [45] 
505 0 |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- 1: Computational Materials Design for Hydrogen Storage -- 1.1 Background -- 1.2 Methodology -- 1.3 Transition-Metal Hydrides -- 1.3.1 Thermodynamics for Hydrides -- 1.3.2 Energetics of Transition-Metal Dihydrides -- 1.4 Borohydrides -- 1.4.1 Fundamental Properties of LiBH4 -- 1.4.2 Borohydrides with Multivalent Cations -- 1.4.3 Thermodynamically Stability of Borohydrides -- 1.4.4 Experimental Support -- 1.5 Future Scope 
505 8 |a 2: Atomistic Analysis of Electrolytes: Redox Potentials and Electrochemical Reactions in a Lithium-Ion Battery -- 2.1 Introduction -- 2.2 Redox Potential Computations Using the DFT/PCM Method -- 2.2.1 Standard Redox Potential -- 2.2.2 Standard Gibbs Free Energy Calculations Using the DFT/PCM Method -- 2.2.3 Oxidation and Reduction Potentials of Typical Organic Solvents -- 2.2.3.1 One-electron oxidation potential -- 2.2.3.2 One-electron reduction potential -- 2.3 Electrolyte Decomposition Analysis -- 2.3.1 Global Reaction Route Mapping Method -- 2.3.2 Reductive Decomposition of Ethylene Carbonate 
505 8 |a 3.3.2.3 Constant Fermi energy calculation -- 3.3.2.4 Electrosorption valency value and symmetry factor -- 3.4 Applications -- 3.4.1 Equilibrium Surface Phase Diagram -- 3.4.2 Electrosorption Valency Value -- 3.4.3 Potential-Dependent Spectroscopy -- 3.4.4 Kinetics and Symmetry Factor -- 3.4.5 Applications to New Materials -- 3.5 Future Scope -- 4: Atomistic Modeling of Photoelectric Cells for Artificial Photosynthesis -- 4.1 Introduction -- 4.2 Surface Modification of Semiconductors -- 4.2.1 Metal-Nanoparticles Loaded on TiO2 -- 4.2.2 Defect Formations of N-doped Ta2O5 
505 8 |a 4.3 Electron Transfer Dynamics in Semiconductor/Metal-Complex for CO2 Reduction -- 4.3.1 Methodology -- 4.3.2 Results and Discussion -- 4.4 Summary and Future Scope -- 5: Large-Scale Simulations I: Methods and Applications for a Li-Ion Battery -- 5.1 Introduction -- 5.2 Method -- 5.2.1 Real-Space Grid Kohn-Sham DFT (RGDFT) Method [48] -- 5.2.2 Divide-and-Conquer-Type RGDFT Method [48] -- 5.2.3 Hybrid Quantum-Classical Simulation Method -- 5.2.3.1 Buffered cluster method -- 5.3 Applications 
520 |a Environmental protection and sustainability are major concerns in today's world, and a reduction in CO2 emission and the implementation of clean energy are inevitable challenges for scientists and engineers today. The development of electrochemical devices, such as fuel cells, Li-ion batteries, and artificial photosynthesis, is vital for solving environmental problems. A practical device requires designing of materials and operational systems; however, a multidisciplinary subject covering microscopic physics and chemistry as well as macroscopic device properties is absent. In this situation, multiscale simulations play an important role. This book compiles and details cutting-edge research and development of atomistic, nanoscale, microscale, and macroscale computational modeling for various electrochemical devices, including hydrogen storage, Li-ion batteries, fuel cells, and artificial photocatalysis. The authors have been involved in the development of energy materials and devices for many years. In each chapter, after reviewing the calculation methods commonly used in the field, the authors focus on a specific computational approach that is applied to a realistic problem crucial for device improvement. They introduce the simulation technique not only as an analysis tool to explain experimental results but also as a design tool in the scale of interest. At the end of each chapter, a future perspective is added as a guide for the extension of research. Therefore, this book is suitable as a textbook or a reference on multiscale simulations and will appeal to anyone interested in learning practical simulations and applying them to problems in the development of frontier and futuristic electrochemical devices. 
588 |a OCLC-licensed vendor bibliographic record. 
650 0 |a Electrochemistry  |x Simulation methods.  |9 41627 
650 7 |a SCIENCE / Chemistry / Physical & Theoretical  |2 bisacsh  |9 41628 
650 7 |a SCIENCE / Chemistry / Industrial & Technical  |2 bisacsh  |9 41629 
650 7 |a SCIENCE / Mathematical Physics  |2 bisacsh  |9 41630 
856 4 0 |3 Taylor & Francis  |u https://www.taylorfrancis.com/books/9780429295454 
856 4 2 |3 OCLC metadata license agreement  |u http://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf 
942 |2 lcc  |c EB 
999 |c 208581  |d 208580