Quantization on Nilpotent Lie Groups
This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the a...
I tiakina i:
Ngā kaituhi matua: | , |
---|---|
Kaituhi rangatōpū: | |
Hōputu: | Tāhiko īPukapuka |
Reo: | Ingarihi |
I whakaputaina: |
Cham :
Springer International Publishing : Imprint: Birkhäuser,
2016.
|
Putanga: | 1st ed. 2016. |
Rangatū: | Progress in Mathematics,
314 |
Ngā marau: | |
Urunga tuihono: | http://dx.doi.org/10.1007/978-3-319-29558-9 |
Ngā Tūtohu: |
Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
|
Rārangi ihirangi:
- Preface
- Introduction
- Notation and conventions
- 1 Preliminaries on Lie groups
- 2 Quantization on compact Lie groups
- 3 Homogeneous Lie groups
- 4 Rockland operators and Sobolev spaces
- 5 Quantization on graded Lie groups
- 6 Pseudo-differential operators on the Heisenberg group
- A Miscellaneous
- B Group C* and von Neumann algebras
- Schrödinger representations and Weyl quantization
- Explicit symbolic calculus on the Heisenberg group
- List of quantizations
- Bibliography
- Index.