Computer Vision Metrics Survey, Taxonomy, and Analysis /

Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Krig, Scott (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Lenguaje:inglés
Publicado: Berkeley, CA : Apress : Imprint: Apress, 2014.
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-1-4302-5930-5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing ‘how-to’ source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners.
Descripción Física:XXXI, 508 p. 216 illus. online resource.
ISBN:9781430259305
DOI:10.1007/978-1-4302-5930-5
Acceso:Open Access