Reinforcement Learning : An Introduction /

"In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The o...

Full description

Saved in:
Bibliographic Details
Main Author: Sutton, Richard S.
Other Authors: Barto, Andrew G.
Format: Electronic eBook
Language:English
Published: Cambridge, Mass. : MIT Press, 1998.
Series:Book collections on Project MUSE.
Subjects:
Online Access:Full text available:
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000cam a22000004a 4500
001 musev2_60836
003 MdBmJHUP
005 20240815120749.0
006 m o d
007 cr||||||||nn|n
008 970626s1998 mau o 00 0 eng d
010 |z  97026416  
020 |a 9780262257053 
020 |z 026225705X 
020 |z 9780262193986 
035 |a (OCoLC)1053169863 
040 |a MdBmJHUP  |c MdBmJHUP 
100 1 |a Sutton, Richard S. 
245 1 0 |a Reinforcement Learning :   |b An Introduction /   |c Richard S. Sutton and Andrew G. Barto. 
264 1 |a Cambridge, Mass. :  |b MIT Press,  |c 1998. 
264 3 |a Baltimore, Md. :  |b Project MUSE,   |c 2018 
264 4 |c ©1998. 
300 |a 1 online resource:   |b illustrations ; 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Adaptive computation and machine learning 
505 0 0 |t Contents --  |t Series Foreword --  |t Preface --  |g I.  |t The Problem --  |g 1.  |t Introduction --  |g 2.  |t Evaluative Feedback --  |g 3.  |t The Reinforcement Learning Problem --  |g II.  |t Elementary Solution Methods --  |g 4.  |t Dynamic Programming --  |g 5.  |t Monte Carlo Methods --  |g 6.  |t Temporal-Difference Learning --  |g III.  |t A Unified View --  |g 7.  |t Eligibility Traces --  |g 8.  |t Generalization and Function Approximation --  |g 9.  |t Planning and Learning --  |g 10.  |t Dimensions of Reinforcement Learning --  |g 11.  |t Case Studies --  |t References --  |t Summary of Notation --  |t Index. 
506 0 |a Open Access  |f Unrestricted online access  |2 star 
520 1 |a "In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability."--Jacket. 
588 |a Description based on print version record. 
650 7 |a Reinforcement learning.  |2 nli 
650 0 7 |a Intel·ligencia artificial.  |2 lemac 
650 1 7 |a Leren.  |2 gtt 
650 1 7 |a Reinforcement.  |2 gtt 
650 1 7 |a Kunstmatige intelligentie.  |2 gtt 
650 7 |a Reinforcement learning.  |2 fast  |0 (OCoLC)fst01732553 
650 7 |a Reinforcement learning (Machine learning)  |2 blmlsh 
650 7 |a artificial intelligence.  |2 aat 
650 6 |a Recherche operationnelle. 
650 6 |a Reconnaissance des formes (Informatique) 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage par renforcement (Intelligence artificielle) 
650 2 2 |a Operations Research 
650 2 2 |a Pattern Recognition, Automated 
650 1 2 |a Artificial Intelligence 
650 0 |a Operations research. 
650 0 |a Pattern recognition systems. 
650 0 |a Artificial intelligence. 
650 0 |a Reinforcement learning. 
655 7 |a Electronic books.   |2 local 
700 1 |a Barto, Andrew G. 
710 2 |a Project Muse.  |e distributor 
830 0 |a Book collections on Project MUSE. 
856 4 0 |z Full text available:   |u https://muse.jhu.edu/book/60836/ 
999 |c 232096  |d 232095