Iterative methods in combinatorial optimization
"With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence,...
Saved in:
Main Author: | |
---|---|
Corporate Author: | |
Other Authors: | , |
Format: | Electronic eBook |
Language: | English |
Published: |
Cambridge ; New York :
Cambridge University Press,
2011.
|
Series: | Cambridge texts in applied mathematics.
|
Subjects: | |
Online Access: | An electronic book accessible through the World Wide Web; click to view |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | "With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence, and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids, and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms"-- "With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids, and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms"-- |
---|---|
Physical Description: | xi, 242 p. : ill. |
Bibliography: | Includes bibliographical references and index. |