Quantization on Nilpotent Lie Groups

This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the a...

Full description

Saved in:
Bibliographic Details
Main Authors: Fischer, Veronique (Author), Ruzhansky, Michael (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Edition:1st ed. 2016.
Series:Progress in Mathematics, 314
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-319-29558-9
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-29558-9
003 DE-He213
005 20180131132530.0
007 cr nn 008mamaa
008 160308s2016 gw | s |||| 0|eng d
020 |a 9783319295589  |9 978-3-319-29558-9 
024 7 |a 10.1007/978-3-319-29558-9  |2 doi 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Fischer, Veronique.  |e author. 
245 1 0 |a Quantization on Nilpotent Lie Groups  |h [electronic resource] /  |c by Veronique Fischer, Michael Ruzhansky. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XIII, 557 p. 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 0743-1643 ;  |v 314 
505 0 |a Preface -- Introduction -- Notation and conventions -- 1 Preliminaries on Lie groups -- 2 Quantization on compact Lie groups -- 3 Homogeneous Lie groups -- 4 Rockland operators and Sobolev spaces -- 5 Quantization on graded Lie groups -- 6 Pseudo-differential operators on the Heisenberg group -- A Miscellaneous -- B Group C* and von Neumann algebras -- Schrödinger representations and Weyl quantization -- Explicit symbolic calculus on the Heisenberg group -- List of quantizations -- Bibliography -- Index. 
506 0 |a Open Access 
520 |a This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups. The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Harmonic analysis. 
650 0 |a Functional analysis. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Mathematical Physics. 
700 1 |a Ruzhansky, Michael.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319295572 
830 0 |a Progress in Mathematics,  |x 0743-1643 ;  |v 314 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-29558-9 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649) 
999 |c 188912  |d 188912