Principles of GNSS, inertial, and multisensor integrated navigation systems /

Saved in:
Bibliographic Details
Main Author: Groves, Paul D. (Paul David) (Author)
Format: Electronic eBook
Language:English
Published: Boston : Artech House, [2013]
Edition:Second edition.
Series:GNSS technology and applications series.
Subjects:
Online Access:An electronic book accessible through the World Wide Web; click to view
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Machine generated contents note: ch. 1 Introduction
  • 1.1.Fundamental Concepts
  • 1.2.Dead Reckoning
  • 1.3.Position Fixing
  • 1.3.1.Position-Fixing Methods
  • 1.3.2.Signal-Based Positioning
  • 1.3.3.Environmental Feature Matching
  • 1.4.The Navigation System
  • 1.4.1.Requirements
  • 1.4.2.Context
  • 1.4.3.Integration
  • 1.4.4.Aiding
  • 1.4.5.Assistance and Cooperation
  • 1.4.6.Fault Detection
  • 1.5.Overview of the Book
  • References
  • ch. 2 Coordinate Frames, Kinematics, and the Earth
  • 2.1.Coordinate Frames
  • 2.1.1.Earth-Centered Inertial Frame
  • 2.1.2.Earth-Centered Earth-Fixed Frame
  • 2.1.3.Local Navigation Frame
  • 2.1.4.Local Tangent-Plane Frame
  • 2.1.5.Body Frame
  • 2.1.6.Other Frames
  • 2.2.Attitude, Rotation, and Resolving Axes Transformations
  • 2.2.1.Euler Attitude
  • 2.2.2.Coordinate Transformation Matrix
  • 2.2.3.Quaternion Attitude
  • 2.2.4.Rotation Vector
  • 2.3.Kinematics
  • 2.3.1.Angular Rate
  • 2.3.2.Cartesian Position
  • 2.3.3.Velocity
  • 2.3.4.Acceleration
  • 2.3.5.Motion with Respect to a Rotating Reference Frame
  • 2.4.Earth Surface and Gravity Models
  • 2.4.1.The Ellipsoid Model of the Earth's Surface
  • 2.4.2.Curvilinear Position
  • 2.4.3.Position Conversion
  • 2.4.4.The Geoid, Orthometric Height, and Earth Tides
  • 2.4.5.Projected Coordinates
  • 2.4.6.Earth Rotation
  • 2.4.7.Specific Force, Gravitation, and Gravity
  • 2.5.Frame Transformations
  • 2.5.1.Inertial and Earth Frames
  • 2.5.2.Earth and Local Navigation Frames
  • 2.5.3.Inertial and Local Navigation Frames
  • 2.5.4.Earth and Local Tangent-Plane Frames
  • 2.5.5.Transposition of Navigation Solutions
  • References
  • ch. 3 Kalman Filter-Based Estimation
  • 3.1.Introduction
  • 3.1.1.Elements of the Kalman Filter
  • 3.1.2.Steps of the Kalman Filter
  • 3.1.3.Kalman Filter Applications
  • 3.2.Algorithms and Models
  • 3.2.1.Definitions
  • 3.2.2.Kalman Filter Algorithm
  • 3.2.3.System Model
  • 3.2.4.Measurement Model
  • 3.2.5.Kalman Filter Behavior and State Observability
  • 3.2.6.Closed-Loop Kalman Filter
  • 3.2.7.Sequential Measurement Update
  • 3.3.Implementation Issues
  • 3.3.1.Tuning and Stability
  • 3.3.2.Algorithm Design
  • 3.3.3.Numerical Issues
  • 3.3.4.Time Synchronization
  • 3.3.5.Kalman Filter Design Process
  • 3.4.Extensions to the Kalman Filter
  • 3.4.1.Extended and Linearized Kalman Filter
  • 3.4.2.Unscented Kalman Filter
  • 3.4.3.Time-Correlated Noise
  • 3.4.4.Adaptive Kalman Filter
  • 3.4.5.Multiple-Hypothesis Filtering
  • 3.4.6.Kalman Smoothing
  • 3.5.The Particle Filter
  • References
  • ch. 4 Inertial Sensors
  • 4.1.Accelerometers
  • 4.1.1.Pendulous Accelerometers
  • 4.1.2.Vibrating-Beam Accelerometers
  • 4.2.Gyroscopes
  • 4.2.1.Optical Gyroscopes
  • 4.2.2.Vibratory Gyroscopes
  • 4.3.Inertial Measurement Units
  • 4.4.Error Characteristics
  • 4.4.1.Biases
  • 4.4.2.Scale Factor and Cross-Coupling Errors
  • 4.4.3.Random Noise
  • 4.4.4.Further Error Sources
  • 4.4.5.Vibration-Induced Errors
  • 4.4.6.Error Models
  • References
  • ch. 5 Inertial Navigation
  • 5.1.Introduction to Inertial Navigation
  • 5.2.Inertial-Frame Navigation Equations
  • 5.2.1.Attitude Update
  • 5.2.2.Specific-Force Frame Transformation
  • 5.2.3.Velocity Update
  • 5.2.4.Position Update
  • 5.3.Earth-Frame Navigation Equations
  • 5.3.1.Attitude Update
  • 5.3.2.Specific-Force Frame Transformation
  • 5.3.3.Velocity Update
  • 5.3.4.Position Update
  • 5.4.Local-Navigation-Frame Navigation Equations
  • 5.4.1.Attitude Update
  • 5.4.2.Specific-Force Frame Transformation
  • 5.4.3.Velocity Update
  • 5.4.4.Position Update
  • 5.4.5.Wander-Azimuth Implementation
  • 5.5.Navigation Equations Optimization
  • 5.5.1.Precision Attitude Update
  • 5.5.2.Precision Specific-Force Frame Transformation
  • 5.5.3.Precision Velocity and Position Updates
  • 5.5.4.Effects of Sensor Sampling Interval and Vibration
  • 5.5.5.Design Tradeoffs
  • 5.6.Initialization and Alignment
  • 5.6.1.Position and Velocity Initialization
  • 5.6.2.Attitude Initialization
  • 5.6.3.Fine Alignment
  • 5.7.INS Error Propagation
  • 5.7.1.Short-Term Straight-Line Error Propagation
  • 5.7.2.Medium- and Long-Term Error Propagation
  • 5.7.3.Maneuver-Dependent Errors
  • 5.8.Indexed IMU
  • 5.9.Partial IMU
  • References
  • ch. 6 Dead Reckoning, Attitude, and Height Measurement
  • 6.1.Attitude Measurement
  • 6.1.1.Magnetic Heading
  • 6.1.2.Marine Gyrocompass
  • 6.1.3.Strapdown Yaw-Axis Gyro
  • 6.1.4.Heading from Trajectory
  • 6.1.5.Integrated Heading Determination
  • 6.1.6.Accelerometer Leveling and Tilt Sensors
  • 6.1.7.Horizon Sensing
  • 6.1.8.Attitude and Heading Reference System
  • 6.2.Height and Depth Measurement
  • 6.2.1.Barometric Altimeter
  • 6.2.2.Depth Pressure Sensor
  • 6.2.3.Radar Altimeter
  • 6.3.Odometry
  • 6.3.1.Linear Odometry
  • 6.3.2.Differential Odometry
  • 6.3.3.Integrated Odometry and Partial IMU
  • 6.4.Pedestrian Dead Reckoning Using Step Detection
  • 6.5.Doppler Radar and Sonar
  • 6.6.Other Dead-Reckoning Techniques
  • 6.6.1.Correlation-Based Velocity Measurement
  • 6.6.2.Air Data
  • 6.6.3.Ship's Speed Log
  • References
  • ch. 7 Principles of Radio Positioning
  • 7.1.Radio Positioning Configurations and Methods
  • 7.1.1.Self-Positioning and Remote Positioning
  • 7.1.2.Relative Positioning
  • 7.1.3.Proximity
  • 7.1.4.Ranging
  • 7.1.5.Angular Positioning
  • 7.1.6.Pattern Matching
  • 7.1.7.Doppler Positioning
  • 7.2.Positioning Signals
  • 7.2.1.Modulation Types
  • 7.2.2.Radio Spectrum
  • 7.3.User Equipment
  • 7.3.1.Architecture
  • 7.3.2.Signal Timing Measurement
  • 7.3.3.Position Determination from Ranging
  • 7.4.Propagation, Error Sources, and Positioning Accuracy
  • 7.4.1.Ionosphere, Troposphere, and Surface Propagation Effects
  • 7.4.2.Attenuation, Reflection, Multipath, and Diffraction
  • 7.4.3.Resolution, Noise, and Tracking Errors
  • 7.4.4.Transmitter Location and Timing Errors
  • 7.4.5.Effect of Signal Geometry
  • References
  • ch. 8 GNSS: Fundamentals, Signals, and Satellites
  • 8.1.Fundamentals of Satellite Navigation
  • 8.1.1.GNSS Architecture
  • 8.1.2.Signals and Range Measurement
  • 8.1.3.Positioning
  • 8.1.4.Error Sources and Performance Limitations
  • 8.2.The Systems
  • 8.2.1.Global Positioning System
  • 8.2.2.GLONASS
  • 8.2.3.Galileo
  • 8.2.4.Beidou
  • 8.2.5.Regional Systems
  • 8.2.6.Augmentation Systems
  • 8.2.7.System Compatibility
  • 8.3.GNSS Signals
  • 8.3.1.Signal Types
  • 8.3.2.Global Positioning System
  • 8.3.3.GLONASS
  • 8.3.4.Galileo
  • 8.3.5.Beidou
  • 8.3.6.Regional Systems
  • 8.3.7.Augmentation Systems
  • 8.4.Navigation Data Messages
  • 8.4.1.GPS
  • 8.4.2.GLONASS
  • 8.4.3.Galileo
  • 8.4.4.SBAS
  • 8.4.5.Time Base Synchronization
  • 8.5.Satellite Orbits and Geometry
  • 8.5.1.Satellite Orbits
  • 8.5.2.Satellite Position and Velocity
  • 8.5.3.Range, Range Rate, and Line of Sight
  • 8.5.4.Elevation and Azimuth
  • References
  • ch. 9 GNSS: User Equipment Processing and Errors
  • 9.1.Receiver Hardware and Antenna
  • 9.1.1.Antennas
  • 9.1.2.Reference Oscillator
  • 9.1.3.Receiver Front End
  • 9.1.4.Baseband Signal Processor
  • 9.2.Ranging Processor
  • 9.2.1.Acquisition
  • 9.2.2.Code Tracking
  • 9.2.3.Carrier Tracking
  • 9.2.4.Tracking Lock Detection
  • 9.2.5.Navigation-Message Demodulation
  • 9.2.6.Carrier-Power-to-Noise-Density Measurement
  • 9.2.7.Pseudo-Range, Pseudo-Range-Rate, and Carrier-Phase Measurements
  • 9.3.Range Error Sources
  • 9.3.1.Ephemeris Prediction and Satellite Clock Errors
  • 9.3.2.Ionosphere and Troposphere Propagation Errors
  • 9.3.3.Tracking Errors
  • 9.3.4.Multipath, Nonline-of-Sight, and Diffraction
  • 9.4.Navigation Processor
  • 9.4.1.Single-Epoch Navigation Solution
  • 9.4.2.Filtered Navigation Solution
  • 9.4.3.Signal Geometry and Navigation Solution Accuracy
  • 9.4.4.Position Error Budget
  • References
  • ch.
  • 10 GNSS: Advanced Techniques
  • 10.1.Differential GNSS
  • 10.1.1.Spatial and Temporal Correlation of GNSS Errors
  • 10.1.2.Local and Regional Area DGNSS
  • 10.1.3.Wide Area DGNSS and Precise Point Positioning
  • 10.1.4.Relative GNSS
  • 10.2.Real-Time Kinematic Carrier-Phase Positioning and Attitude Determination
  • 10.2.1.Principles of Accumulated Delta Range Positioning
  • 10.2.2.Single-Epoch Navigation Solution Using Double-Differenced ADR
  • 10.2.3.Geometry-Based Integer Ambiguity Resolution
  • 10.2.4.Multifrequency Integer Ambiguity Resolution
  • 10.2.5.GNSS Attitude Determination
  • 10.3.Interference Rejection and Weak Signal Processing
  • 10.3.1.Sources of Interference, Jamming, and Attenuation
  • 10.3.2.Antenna Systems
  • 10.3.3.Receiver Front-End Filtering
  • 10.3.4.Extended Range Tracking
  • 10.3.5.Receiver Sensitivity
  • 10.3.6.Combined Acquisition and Tracking
  • 10.3.7.Vector Tracking
  • 10.4.Mitigation of Multipath Interference and Nonline-of-Sight Reception
  • 10.4.1.Antenna-Based Techniques
  • 10.4.2.Receiver-Based Techniques
  • 10.4.3.Navigation-Processor-Based Techniques
  • 10.5.Aiding, Assistance, and Orbit Prediction
  • 10.5.1.Acquisition and Velocity Aiding
  • 10.5.2.Assisted GNSS
  • 10.5.3.Orbit Prediction
  • 10.6.Shadow Matching
  • References
  • ch. 11 Long- and Medium-Range Radio Navigation
  • 11.1.Aircraft Navigation Systems
  • 11.1.1.Distance Measuring Equipment
  • 11.1.2.Range-Bearing Systems
  • 11.1.3.Nondirectional Beacons
  • 11.1.4.JTIDS/MIDS Relative Navigation
  • 11.1.5.Future Air Navigation Systems
  • 11.2.Enhanced Loran
  • 11.2.1.Signals
  • 11.2.2.User Equipment and Positioning
  • 11.2.3.Error Sources
  • 11.2.4.Differential Loran
  • 11.3.Phone Positioning
  • 11.3.1.Proximity and Pattern Matching
  • 11.3.2.Ranging
  • 11.4.Other Systems
  • 11.4.1.Iridium Positioning
  • 11.4.2.Marine Radio Beacons
  • 11.4.3.AM Radio Broadcasts
  • 11.4.4.FM Radio Broadcasts
  • 11.4.5.Digital Television and Radio
  • 11.4.6.Generic Radio Positioning
  • References
  • ch. 12 Short-Range Positioning
  • 12.1.Pseudolites
  • 12.1.1.In-Band Pseudolites
  • 12.1.2.Locata and Terralite XPS
  • 12.1.3.Indoor Messaging System
  • 12.2.Ultrawideband
  • 12.2.1.Modulation Schemes
  • 12.2.2.Signal Timing
  • 12.2.3.Positioning
  • Note continued: 12.3.Short-Range Communications Systems
  • 12.3.1.Wireless Local Area Networks (Wi-Fi)
  • 12.3.2.Wireless Personal Area Networks
  • 12.3.3.Radio Frequency Identification
  • 12.3.4.Bluetooth Low Energy
  • 12.3.5.Dedicated Short-Range Communication
  • 12.4.Underwater Acoustic Positioning
  • 12.5.Other Positioning Technologies
  • 12.5.1.Radio
  • 12.5.2.Ultrasound
  • 12.5.3.Infrared
  • 12.5.4.Optical
  • 12.5.5.Magnetic
  • References
  • ch. 13 Environmental Feature Matching
  • 13.1.Map Matching
  • 13.1.1.Digital Road Maps
  • 13.1.2.Road Link Identification
  • 13.1.3.Road Positioning
  • 13.1.4.Rail Map Matching
  • 13.1.5.Pedestrian Map Matching
  • 13.2.Terrain-Referenced Navigation
  • 13.2.1.Sequential Processing
  • 13.2.2.Batch Processing
  • 13.2.3.Performance
  • 13.2.4.Laser TRN
  • 13.2.5.Sonar TRN
  • 13.2.6.Barometric TRN
  • 13.2.7.Terrain Database Height Aiding
  • 13.3.Image-Based Navigation
  • 13.3.1.Imaging Sensors
  • 13.3.2.Image Feature Comparison
  • 13.3.3.Position Fixing Using Individual Features
  • 13.3.4.Position Fixing by Whole-Image Matching
  • 13.3.5.Visual Odometry
  • 13.3.6.Feature Tracking
  • 13.3.7.Stellar Navigation
  • 13.4.Other Feature-Matching Techniques
  • 13.4.1.Gravity Gradiometry
  • 13.4.2.Magnetic Field Variation
  • 13.4.3.Celestial X-Ray Sources
  • References
  • ch. 14 INS/GNSS Integration
  • 14.1.Integration Architectures
  • 14.1.1.Correction of the Inertial Navigation Solution
  • 14.1.2.Loosely Coupled Integration
  • 14.1.3.Tightly Coupled Integration
  • 14.1.4.GNSS Aiding
  • 14.1.5.Deeply Coupled Integration
  • 14.2.System Model and State Selection
  • 14.2.1.State Selection and Observability
  • 14.2.2.INS State Propagation in an Inertial Frame
  • 14.2.3.INS State Propagation in an Earth Frame
  • 14.2.4.INS State Propagation Resolved in a Local Navigation Frame
  • 14.2.5.Additional IMU Error States
  • 14.2.6.INS System Noise
  • 14.2.7.GNSS State Propagation and System Noise
  • 14.2.8.State Initialization
  • 14.3.Measurement Models
  • 14.3.1.Loosely Coupled Integration
  • 14.3.2.Tightly Coupled Integration
  • 14.3.3.Deeply Coupled Integration
  • 14.3.4.Estimation of Attitude and Instrument Errors
  • 14.4.Advanced INS/GNSS Integration
  • 14.4.1.Differential GNSS
  • 14.4.2.Carrier-Phase Positioning
  • 14.4.3.GNSS Attitude
  • 14.4.4.Large Heading Errors
  • 14.4.5.Advanced IMU Error Modeling
  • 14.4.6.Smoothing
  • References
  • ch. 15 INS Alignment, Zero Updates, and Motion Constraints
  • 15.1.Transfer Alignment
  • 15.1.1.Conventional Measurement Matching
  • 15.1.2.Rapid Transfer Alignment
  • 15.1.3.Reference Navigation System
  • 15.2.Quasi-Stationary Alignment
  • 15.2.1.Coarse Alignment
  • 15.2.2.Fine Alignment
  • 15.3.Zero Updates
  • 15.3.1.Stationary-Condition Detection
  • 15.3.2.Zero Velocity Update
  • 15.3.3.Zero Angular Rate Update
  • 15.4.Motion Constraints
  • 15.4.1.Land Vehicle Constraints
  • 15.4.2.Pedestrian Constraints
  • 15.4.3.Ship and Boat Constraint
  • References
  • ch. 16 Multisensor Integrated Navigation
  • 16.1.Integration Architectures
  • 16.1.1.Cascaded Single-Epoch Integration
  • 16.1.2.Centralized Single-Epoch Integration
  • 16.1.3.Cascaded Filtered Integration
  • 16.1.4.Centralized Filtered Integration
  • 16.1.5.Federated Filtered Integration
  • 16.1.6.Hybrid Integration Architectures
  • 16.1.7.Total-State Kalman Filter Employing Prediction
  • 16.1.8.Error-State Kalman Filter
  • 16.1.9.Primary and Reversionary Moding
  • 16.1.10.Context-Adaptive Moding
  • 16.2.Dead Reckoning, Attitude, and Height Measurement
  • 16.2.1.Attitude
  • 16.2.2.Height and Depth
  • 16.2.3.Odometry
  • 16.2.4.Pedestrian Dead Reckoning Using Step Detection
  • 16.2.5.Doppler Radar and Sonar
  • 16.2.6.Visual Odometry and Terrain-Referenced Dead Reckoning
  • 16.3.Position-Fixing Measurements
  • 16.3.1.Position Measurement Integration
  • 16.3.2.Ranging Measurement Integration
  • 16.3.3.Angular Measurement Integration
  • 16.3.4.Line Fix Integration
  • 16.3.5.Handling Ambiguous Measurements
  • 16.3.6.Feature Tracking and Mapping
  • 16.3.7.Aiding of Position-Fixing Systems
  • References
  • ch. 17 Fault Detection, Integrity Monitoring, and Testing
  • 17.1.Failure Modes
  • 17.1.1.Inertial Navigation
  • 17.1.2.Dead Reckoning, Attitude, and Height Measurement
  • 17.1.3.GNSS
  • 17.1.4.Terrestrial Radio Navigation
  • 17.1.5.Environmental Feature Matching and Tracking
  • 17.1.6.Integration Algorithm
  • 17.1.7.Context
  • 17.2.Range Checks
  • 17.2.1.Sensor Outputs
  • 17.2.2.Navigation Solution
  • 17.2.3.Kalman Filter Estimates
  • 17.3.Kalman Filter Measurement Innovations
  • 17.3.1.Innovation Filtering
  • 17.3.2.Innovation Sequence Monitoring
  • 17.3.3.Remedying Biased State Estimates
  • 17.4.Direct Consistency Checks
  • 17.4.1.Measurement Consistency Checks and RAIM
  • 17.4.2.Parallel Solutions
  • 17.5.Infrastructure-Based Integrity Monitoring
  • 17.6.Solution Protection and Performance Requirements
  • 17.7.Testing
  • 17.7.1.Field Trials
  • 17.7.2.Recorded Data Testing
  • 17.7.3.Laboratory Testing
  • 17.7.4.Software Simulation
  • References
  • ch. 18 Applications and Future Trends
  • 18.1.Design and Development
  • 18.2.Aviation
  • 18.3.Guided Weapons and Small UAVs
  • 18.4.Land Vehicle Applications
  • 18.5.Rail Navigation
  • 18.6.Marine Navigation
  • 18.7.Underwater Navigation
  • 18.8.Spacecraft Navigation
  • 18.9.Pedestrian Navigation
  • 18.10.Other Applications
  • 18.11.Future Trends
  • References.