Principles of GNSS, inertial, and multisensor integrated navigation systems /
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Boston :
Artech House,
[2013]
|
Edition: | Second edition. |
Series: | GNSS technology and applications series.
|
Subjects: | |
Online Access: | An electronic book accessible through the World Wide Web; click to view |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Table of Contents:
- Machine generated contents note: ch. 1 Introduction
- 1.1.Fundamental Concepts
- 1.2.Dead Reckoning
- 1.3.Position Fixing
- 1.3.1.Position-Fixing Methods
- 1.3.2.Signal-Based Positioning
- 1.3.3.Environmental Feature Matching
- 1.4.The Navigation System
- 1.4.1.Requirements
- 1.4.2.Context
- 1.4.3.Integration
- 1.4.4.Aiding
- 1.4.5.Assistance and Cooperation
- 1.4.6.Fault Detection
- 1.5.Overview of the Book
- References
- ch. 2 Coordinate Frames, Kinematics, and the Earth
- 2.1.Coordinate Frames
- 2.1.1.Earth-Centered Inertial Frame
- 2.1.2.Earth-Centered Earth-Fixed Frame
- 2.1.3.Local Navigation Frame
- 2.1.4.Local Tangent-Plane Frame
- 2.1.5.Body Frame
- 2.1.6.Other Frames
- 2.2.Attitude, Rotation, and Resolving Axes Transformations
- 2.2.1.Euler Attitude
- 2.2.2.Coordinate Transformation Matrix
- 2.2.3.Quaternion Attitude
- 2.2.4.Rotation Vector
- 2.3.Kinematics
- 2.3.1.Angular Rate
- 2.3.2.Cartesian Position
- 2.3.3.Velocity
- 2.3.4.Acceleration
- 2.3.5.Motion with Respect to a Rotating Reference Frame
- 2.4.Earth Surface and Gravity Models
- 2.4.1.The Ellipsoid Model of the Earth's Surface
- 2.4.2.Curvilinear Position
- 2.4.3.Position Conversion
- 2.4.4.The Geoid, Orthometric Height, and Earth Tides
- 2.4.5.Projected Coordinates
- 2.4.6.Earth Rotation
- 2.4.7.Specific Force, Gravitation, and Gravity
- 2.5.Frame Transformations
- 2.5.1.Inertial and Earth Frames
- 2.5.2.Earth and Local Navigation Frames
- 2.5.3.Inertial and Local Navigation Frames
- 2.5.4.Earth and Local Tangent-Plane Frames
- 2.5.5.Transposition of Navigation Solutions
- References
- ch. 3 Kalman Filter-Based Estimation
- 3.1.Introduction
- 3.1.1.Elements of the Kalman Filter
- 3.1.2.Steps of the Kalman Filter
- 3.1.3.Kalman Filter Applications
- 3.2.Algorithms and Models
- 3.2.1.Definitions
- 3.2.2.Kalman Filter Algorithm
- 3.2.3.System Model
- 3.2.4.Measurement Model
- 3.2.5.Kalman Filter Behavior and State Observability
- 3.2.6.Closed-Loop Kalman Filter
- 3.2.7.Sequential Measurement Update
- 3.3.Implementation Issues
- 3.3.1.Tuning and Stability
- 3.3.2.Algorithm Design
- 3.3.3.Numerical Issues
- 3.3.4.Time Synchronization
- 3.3.5.Kalman Filter Design Process
- 3.4.Extensions to the Kalman Filter
- 3.4.1.Extended and Linearized Kalman Filter
- 3.4.2.Unscented Kalman Filter
- 3.4.3.Time-Correlated Noise
- 3.4.4.Adaptive Kalman Filter
- 3.4.5.Multiple-Hypothesis Filtering
- 3.4.6.Kalman Smoothing
- 3.5.The Particle Filter
- References
- ch. 4 Inertial Sensors
- 4.1.Accelerometers
- 4.1.1.Pendulous Accelerometers
- 4.1.2.Vibrating-Beam Accelerometers
- 4.2.Gyroscopes
- 4.2.1.Optical Gyroscopes
- 4.2.2.Vibratory Gyroscopes
- 4.3.Inertial Measurement Units
- 4.4.Error Characteristics
- 4.4.1.Biases
- 4.4.2.Scale Factor and Cross-Coupling Errors
- 4.4.3.Random Noise
- 4.4.4.Further Error Sources
- 4.4.5.Vibration-Induced Errors
- 4.4.6.Error Models
- References
- ch. 5 Inertial Navigation
- 5.1.Introduction to Inertial Navigation
- 5.2.Inertial-Frame Navigation Equations
- 5.2.1.Attitude Update
- 5.2.2.Specific-Force Frame Transformation
- 5.2.3.Velocity Update
- 5.2.4.Position Update
- 5.3.Earth-Frame Navigation Equations
- 5.3.1.Attitude Update
- 5.3.2.Specific-Force Frame Transformation
- 5.3.3.Velocity Update
- 5.3.4.Position Update
- 5.4.Local-Navigation-Frame Navigation Equations
- 5.4.1.Attitude Update
- 5.4.2.Specific-Force Frame Transformation
- 5.4.3.Velocity Update
- 5.4.4.Position Update
- 5.4.5.Wander-Azimuth Implementation
- 5.5.Navigation Equations Optimization
- 5.5.1.Precision Attitude Update
- 5.5.2.Precision Specific-Force Frame Transformation
- 5.5.3.Precision Velocity and Position Updates
- 5.5.4.Effects of Sensor Sampling Interval and Vibration
- 5.5.5.Design Tradeoffs
- 5.6.Initialization and Alignment
- 5.6.1.Position and Velocity Initialization
- 5.6.2.Attitude Initialization
- 5.6.3.Fine Alignment
- 5.7.INS Error Propagation
- 5.7.1.Short-Term Straight-Line Error Propagation
- 5.7.2.Medium- and Long-Term Error Propagation
- 5.7.3.Maneuver-Dependent Errors
- 5.8.Indexed IMU
- 5.9.Partial IMU
- References
- ch. 6 Dead Reckoning, Attitude, and Height Measurement
- 6.1.Attitude Measurement
- 6.1.1.Magnetic Heading
- 6.1.2.Marine Gyrocompass
- 6.1.3.Strapdown Yaw-Axis Gyro
- 6.1.4.Heading from Trajectory
- 6.1.5.Integrated Heading Determination
- 6.1.6.Accelerometer Leveling and Tilt Sensors
- 6.1.7.Horizon Sensing
- 6.1.8.Attitude and Heading Reference System
- 6.2.Height and Depth Measurement
- 6.2.1.Barometric Altimeter
- 6.2.2.Depth Pressure Sensor
- 6.2.3.Radar Altimeter
- 6.3.Odometry
- 6.3.1.Linear Odometry
- 6.3.2.Differential Odometry
- 6.3.3.Integrated Odometry and Partial IMU
- 6.4.Pedestrian Dead Reckoning Using Step Detection
- 6.5.Doppler Radar and Sonar
- 6.6.Other Dead-Reckoning Techniques
- 6.6.1.Correlation-Based Velocity Measurement
- 6.6.2.Air Data
- 6.6.3.Ship's Speed Log
- References
- ch. 7 Principles of Radio Positioning
- 7.1.Radio Positioning Configurations and Methods
- 7.1.1.Self-Positioning and Remote Positioning
- 7.1.2.Relative Positioning
- 7.1.3.Proximity
- 7.1.4.Ranging
- 7.1.5.Angular Positioning
- 7.1.6.Pattern Matching
- 7.1.7.Doppler Positioning
- 7.2.Positioning Signals
- 7.2.1.Modulation Types
- 7.2.2.Radio Spectrum
- 7.3.User Equipment
- 7.3.1.Architecture
- 7.3.2.Signal Timing Measurement
- 7.3.3.Position Determination from Ranging
- 7.4.Propagation, Error Sources, and Positioning Accuracy
- 7.4.1.Ionosphere, Troposphere, and Surface Propagation Effects
- 7.4.2.Attenuation, Reflection, Multipath, and Diffraction
- 7.4.3.Resolution, Noise, and Tracking Errors
- 7.4.4.Transmitter Location and Timing Errors
- 7.4.5.Effect of Signal Geometry
- References
- ch. 8 GNSS: Fundamentals, Signals, and Satellites
- 8.1.Fundamentals of Satellite Navigation
- 8.1.1.GNSS Architecture
- 8.1.2.Signals and Range Measurement
- 8.1.3.Positioning
- 8.1.4.Error Sources and Performance Limitations
- 8.2.The Systems
- 8.2.1.Global Positioning System
- 8.2.2.GLONASS
- 8.2.3.Galileo
- 8.2.4.Beidou
- 8.2.5.Regional Systems
- 8.2.6.Augmentation Systems
- 8.2.7.System Compatibility
- 8.3.GNSS Signals
- 8.3.1.Signal Types
- 8.3.2.Global Positioning System
- 8.3.3.GLONASS
- 8.3.4.Galileo
- 8.3.5.Beidou
- 8.3.6.Regional Systems
- 8.3.7.Augmentation Systems
- 8.4.Navigation Data Messages
- 8.4.1.GPS
- 8.4.2.GLONASS
- 8.4.3.Galileo
- 8.4.4.SBAS
- 8.4.5.Time Base Synchronization
- 8.5.Satellite Orbits and Geometry
- 8.5.1.Satellite Orbits
- 8.5.2.Satellite Position and Velocity
- 8.5.3.Range, Range Rate, and Line of Sight
- 8.5.4.Elevation and Azimuth
- References
- ch. 9 GNSS: User Equipment Processing and Errors
- 9.1.Receiver Hardware and Antenna
- 9.1.1.Antennas
- 9.1.2.Reference Oscillator
- 9.1.3.Receiver Front End
- 9.1.4.Baseband Signal Processor
- 9.2.Ranging Processor
- 9.2.1.Acquisition
- 9.2.2.Code Tracking
- 9.2.3.Carrier Tracking
- 9.2.4.Tracking Lock Detection
- 9.2.5.Navigation-Message Demodulation
- 9.2.6.Carrier-Power-to-Noise-Density Measurement
- 9.2.7.Pseudo-Range, Pseudo-Range-Rate, and Carrier-Phase Measurements
- 9.3.Range Error Sources
- 9.3.1.Ephemeris Prediction and Satellite Clock Errors
- 9.3.2.Ionosphere and Troposphere Propagation Errors
- 9.3.3.Tracking Errors
- 9.3.4.Multipath, Nonline-of-Sight, and Diffraction
- 9.4.Navigation Processor
- 9.4.1.Single-Epoch Navigation Solution
- 9.4.2.Filtered Navigation Solution
- 9.4.3.Signal Geometry and Navigation Solution Accuracy
- 9.4.4.Position Error Budget
- References
- ch.
- 10 GNSS: Advanced Techniques
- 10.1.Differential GNSS
- 10.1.1.Spatial and Temporal Correlation of GNSS Errors
- 10.1.2.Local and Regional Area DGNSS
- 10.1.3.Wide Area DGNSS and Precise Point Positioning
- 10.1.4.Relative GNSS
- 10.2.Real-Time Kinematic Carrier-Phase Positioning and Attitude Determination
- 10.2.1.Principles of Accumulated Delta Range Positioning
- 10.2.2.Single-Epoch Navigation Solution Using Double-Differenced ADR
- 10.2.3.Geometry-Based Integer Ambiguity Resolution
- 10.2.4.Multifrequency Integer Ambiguity Resolution
- 10.2.5.GNSS Attitude Determination
- 10.3.Interference Rejection and Weak Signal Processing
- 10.3.1.Sources of Interference, Jamming, and Attenuation
- 10.3.2.Antenna Systems
- 10.3.3.Receiver Front-End Filtering
- 10.3.4.Extended Range Tracking
- 10.3.5.Receiver Sensitivity
- 10.3.6.Combined Acquisition and Tracking
- 10.3.7.Vector Tracking
- 10.4.Mitigation of Multipath Interference and Nonline-of-Sight Reception
- 10.4.1.Antenna-Based Techniques
- 10.4.2.Receiver-Based Techniques
- 10.4.3.Navigation-Processor-Based Techniques
- 10.5.Aiding, Assistance, and Orbit Prediction
- 10.5.1.Acquisition and Velocity Aiding
- 10.5.2.Assisted GNSS
- 10.5.3.Orbit Prediction
- 10.6.Shadow Matching
- References
- ch. 11 Long- and Medium-Range Radio Navigation
- 11.1.Aircraft Navigation Systems
- 11.1.1.Distance Measuring Equipment
- 11.1.2.Range-Bearing Systems
- 11.1.3.Nondirectional Beacons
- 11.1.4.JTIDS/MIDS Relative Navigation
- 11.1.5.Future Air Navigation Systems
- 11.2.Enhanced Loran
- 11.2.1.Signals
- 11.2.2.User Equipment and Positioning
- 11.2.3.Error Sources
- 11.2.4.Differential Loran
- 11.3.Phone Positioning
- 11.3.1.Proximity and Pattern Matching
- 11.3.2.Ranging
- 11.4.Other Systems
- 11.4.1.Iridium Positioning
- 11.4.2.Marine Radio Beacons
- 11.4.3.AM Radio Broadcasts
- 11.4.4.FM Radio Broadcasts
- 11.4.5.Digital Television and Radio
- 11.4.6.Generic Radio Positioning
- References
- ch. 12 Short-Range Positioning
- 12.1.Pseudolites
- 12.1.1.In-Band Pseudolites
- 12.1.2.Locata and Terralite XPS
- 12.1.3.Indoor Messaging System
- 12.2.Ultrawideband
- 12.2.1.Modulation Schemes
- 12.2.2.Signal Timing
- 12.2.3.Positioning
- Note continued: 12.3.Short-Range Communications Systems
- 12.3.1.Wireless Local Area Networks (Wi-Fi)
- 12.3.2.Wireless Personal Area Networks
- 12.3.3.Radio Frequency Identification
- 12.3.4.Bluetooth Low Energy
- 12.3.5.Dedicated Short-Range Communication
- 12.4.Underwater Acoustic Positioning
- 12.5.Other Positioning Technologies
- 12.5.1.Radio
- 12.5.2.Ultrasound
- 12.5.3.Infrared
- 12.5.4.Optical
- 12.5.5.Magnetic
- References
- ch. 13 Environmental Feature Matching
- 13.1.Map Matching
- 13.1.1.Digital Road Maps
- 13.1.2.Road Link Identification
- 13.1.3.Road Positioning
- 13.1.4.Rail Map Matching
- 13.1.5.Pedestrian Map Matching
- 13.2.Terrain-Referenced Navigation
- 13.2.1.Sequential Processing
- 13.2.2.Batch Processing
- 13.2.3.Performance
- 13.2.4.Laser TRN
- 13.2.5.Sonar TRN
- 13.2.6.Barometric TRN
- 13.2.7.Terrain Database Height Aiding
- 13.3.Image-Based Navigation
- 13.3.1.Imaging Sensors
- 13.3.2.Image Feature Comparison
- 13.3.3.Position Fixing Using Individual Features
- 13.3.4.Position Fixing by Whole-Image Matching
- 13.3.5.Visual Odometry
- 13.3.6.Feature Tracking
- 13.3.7.Stellar Navigation
- 13.4.Other Feature-Matching Techniques
- 13.4.1.Gravity Gradiometry
- 13.4.2.Magnetic Field Variation
- 13.4.3.Celestial X-Ray Sources
- References
- ch. 14 INS/GNSS Integration
- 14.1.Integration Architectures
- 14.1.1.Correction of the Inertial Navigation Solution
- 14.1.2.Loosely Coupled Integration
- 14.1.3.Tightly Coupled Integration
- 14.1.4.GNSS Aiding
- 14.1.5.Deeply Coupled Integration
- 14.2.System Model and State Selection
- 14.2.1.State Selection and Observability
- 14.2.2.INS State Propagation in an Inertial Frame
- 14.2.3.INS State Propagation in an Earth Frame
- 14.2.4.INS State Propagation Resolved in a Local Navigation Frame
- 14.2.5.Additional IMU Error States
- 14.2.6.INS System Noise
- 14.2.7.GNSS State Propagation and System Noise
- 14.2.8.State Initialization
- 14.3.Measurement Models
- 14.3.1.Loosely Coupled Integration
- 14.3.2.Tightly Coupled Integration
- 14.3.3.Deeply Coupled Integration
- 14.3.4.Estimation of Attitude and Instrument Errors
- 14.4.Advanced INS/GNSS Integration
- 14.4.1.Differential GNSS
- 14.4.2.Carrier-Phase Positioning
- 14.4.3.GNSS Attitude
- 14.4.4.Large Heading Errors
- 14.4.5.Advanced IMU Error Modeling
- 14.4.6.Smoothing
- References
- ch. 15 INS Alignment, Zero Updates, and Motion Constraints
- 15.1.Transfer Alignment
- 15.1.1.Conventional Measurement Matching
- 15.1.2.Rapid Transfer Alignment
- 15.1.3.Reference Navigation System
- 15.2.Quasi-Stationary Alignment
- 15.2.1.Coarse Alignment
- 15.2.2.Fine Alignment
- 15.3.Zero Updates
- 15.3.1.Stationary-Condition Detection
- 15.3.2.Zero Velocity Update
- 15.3.3.Zero Angular Rate Update
- 15.4.Motion Constraints
- 15.4.1.Land Vehicle Constraints
- 15.4.2.Pedestrian Constraints
- 15.4.3.Ship and Boat Constraint
- References
- ch. 16 Multisensor Integrated Navigation
- 16.1.Integration Architectures
- 16.1.1.Cascaded Single-Epoch Integration
- 16.1.2.Centralized Single-Epoch Integration
- 16.1.3.Cascaded Filtered Integration
- 16.1.4.Centralized Filtered Integration
- 16.1.5.Federated Filtered Integration
- 16.1.6.Hybrid Integration Architectures
- 16.1.7.Total-State Kalman Filter Employing Prediction
- 16.1.8.Error-State Kalman Filter
- 16.1.9.Primary and Reversionary Moding
- 16.1.10.Context-Adaptive Moding
- 16.2.Dead Reckoning, Attitude, and Height Measurement
- 16.2.1.Attitude
- 16.2.2.Height and Depth
- 16.2.3.Odometry
- 16.2.4.Pedestrian Dead Reckoning Using Step Detection
- 16.2.5.Doppler Radar and Sonar
- 16.2.6.Visual Odometry and Terrain-Referenced Dead Reckoning
- 16.3.Position-Fixing Measurements
- 16.3.1.Position Measurement Integration
- 16.3.2.Ranging Measurement Integration
- 16.3.3.Angular Measurement Integration
- 16.3.4.Line Fix Integration
- 16.3.5.Handling Ambiguous Measurements
- 16.3.6.Feature Tracking and Mapping
- 16.3.7.Aiding of Position-Fixing Systems
- References
- ch. 17 Fault Detection, Integrity Monitoring, and Testing
- 17.1.Failure Modes
- 17.1.1.Inertial Navigation
- 17.1.2.Dead Reckoning, Attitude, and Height Measurement
- 17.1.3.GNSS
- 17.1.4.Terrestrial Radio Navigation
- 17.1.5.Environmental Feature Matching and Tracking
- 17.1.6.Integration Algorithm
- 17.1.7.Context
- 17.2.Range Checks
- 17.2.1.Sensor Outputs
- 17.2.2.Navigation Solution
- 17.2.3.Kalman Filter Estimates
- 17.3.Kalman Filter Measurement Innovations
- 17.3.1.Innovation Filtering
- 17.3.2.Innovation Sequence Monitoring
- 17.3.3.Remedying Biased State Estimates
- 17.4.Direct Consistency Checks
- 17.4.1.Measurement Consistency Checks and RAIM
- 17.4.2.Parallel Solutions
- 17.5.Infrastructure-Based Integrity Monitoring
- 17.6.Solution Protection and Performance Requirements
- 17.7.Testing
- 17.7.1.Field Trials
- 17.7.2.Recorded Data Testing
- 17.7.3.Laboratory Testing
- 17.7.4.Software Simulation
- References
- ch. 18 Applications and Future Trends
- 18.1.Design and Development
- 18.2.Aviation
- 18.3.Guided Weapons and Small UAVs
- 18.4.Land Vehicle Applications
- 18.5.Rail Navigation
- 18.6.Marine Navigation
- 18.7.Underwater Navigation
- 18.8.Spacecraft Navigation
- 18.9.Pedestrian Navigation
- 18.10.Other Applications
- 18.11.Future Trends
- References.